Pseudomonas Aeruginosa: Virulence vs Biofilm Formation

Laura Brustenga i Moncusí

join work in progress with Elisenda Feliu

August 18, 2021

Pseudomonas Aeruginosa

- Ubiquitous
- Multidrug, antibiotic resistant (biofilm)
- A leading cause of healthcare-acquired infections
- Considered the paradigm for negative regulation in multikinase networks

Figure: Illustration of P. aeruginosa by Kateryna Kon.

Antibiotic resistance: Biofilm formation

Figure: Schematic illustration of biofilm development of P. aeruginosa (CC BY 4.0 (PS09)).

Figure: Formation of P. aeruginosa biofilms observed by scanning electron microscopy (CC BY 4.0 (BRA⁺14)).

Pseudomonas Aeruginosa: Biofilm formation

Figure: Schematic illustration of part of the regulatory network of life style control of Pseudomonas aeruginosa (CC BY (BBH+19)).

RetS inhibits GacS

Figure: The three mechanisms used by RetS to inhibit GacS signalling. $(CC BY (FWFJ^{+}18))$.

Mechanism 1 (complete but too big)

Spices:

$$RetS_{oo} RetS_{op} RetS_{po} RetS_{pp}$$

 $GacS_{ooo} GacS_{oop} GacS_{opo} GacS_{opp}$ $GacS_{poo} GacS_{pop} GacS_{ppp}$

Solo intersections RetS:

$$\begin{array}{c} \text{RetS}_{\text{oo}} \longrightarrow \text{RetS}_{\text{po}} \\ \text{RetS}_{\text{op}} \longrightarrow \text{RetS}_{\text{pp}} \\ \text{RetS}_{\text{po}} \longrightarrow \text{RetS}_{\text{oo}} \longrightarrow \text{RetS}_{\text{oo}} \end{array} \longrightarrow \text{RetS}_{\text{oo}}$$

Figure: RetS inhibiting GacS:
Mechanism 1 (CC BY (FWFJ⁺18)).

Mechanism 1 (complete but too big)

Solo intersections GacS:

Figure: RetS inhibiting GacS:
Mechanism 1 (CC BY (FWFJ⁺18)).

Mechanism 1 (complete but too big)

Mechanism 1:

We have:

Spices: 4+8+8=20

Reactions: 5+17+24=65

Too big for Real Semi-Algebraic Geometry!

Figure: RetS inhibiting GacS: Mechanism 1 (CC BY (FWFJ⁺18)).

Mechanism 1 (simplified)

Spices:

$$\mathsf{GacS}_\mathsf{oo} \; \mathsf{GacS}_\mathsf{op} \; \mathsf{GacS}_\mathsf{po} \; \mathsf{GacS}_\mathsf{pp}$$

Solo reactions:

$$RetS_p \longrightarrow RetS_o$$

$$\begin{array}{c} \mathsf{GacS}_{\mathsf{oo}} \longrightarrow \; \mathsf{GacS}_{\mathsf{po}} \longrightarrow \; \mathsf{GacS}_{\mathsf{op}} \longrightarrow \; \mathsf{GacS}_{\mathsf{oo}} \\ \mathsf{GacS}_{\mathsf{op}} \longrightarrow \; \mathsf{GacS}_{\mathsf{pp}} \longrightarrow \; \mathsf{GacS}_{\mathsf{po}} \end{array}$$

Mechanism 1:

$$\begin{array}{ccc} \mathsf{RetS}_{\mathsf{o}} + \mathsf{GacS}_{\mathsf{po}} & \Longrightarrow & \mathsf{X}_1 & \longrightarrow & \mathsf{RetS}_{\mathsf{p}} + \mathsf{GacS}_{\mathsf{oo}} \\ \mathsf{RetS}_{\mathsf{o}} + \mathsf{GacS}_{\mathsf{pp}} & \Longrightarrow & \mathsf{X}_5 & \longrightarrow & \mathsf{RetS}_{\mathsf{p}} + \mathsf{GacS}_{\mathsf{op}} \end{array}$$

Spices: 2+4+2=8

Reactions: 2+7+6=15

Figure: RetS inhibiting GacS:

Mechanism 1 (CC BY (FWFJ⁺18)).

Mechanism 2 (simplified)

Spices:

$$GacS_{oo} GacS_{op} GacS_{po} GacS_{pp}$$

Solo reactions:

$$RetS_p \longrightarrow RetS_o$$

$$GacS_{oo} \longrightarrow GacS_{po} \longrightarrow GacS_{op} \longrightarrow GacS_{oo}$$

$$GacS_{op} \longrightarrow GacS_{po} \longrightarrow GacS_{po}$$

Mechanism 2:

Spices: 2+4+4=10 Reactions: 2+7+12=21

Figure: RetS inhibiting GacS: Mechanism 2 (CC BY (FWFJ⁺18)).

Equations Mechanism 1

$$\mathrm{RetS_o} = x_1$$
 $\mathrm{GacS_{oo}} = x_3$ $\mathrm{GacS_{po}} = x_5$ $X_1 = x_7$
 $\mathrm{RetS_p} = x_2$ $\mathrm{GacS_{op}} = x_4$ $\mathrm{GacS_{pp}} = x_6$ $X_5 = x_8$

Assuming mass-action kinetics:

$$\dot{x}_1 = -k_{10}x_1x_5 - k_{11}x_1x_6 + k_1x_2 - k_2x_1 + k_{12}x_7 + k_{13}x_8
\dot{x}_2 = -k_1x_2 + k_2x_1 + k_8x_7 + k_9x_8
\dot{x}_3 = -k_3x_3 + k_6x_4 + k_8x_7
\dot{x}_4 = k_4x_5 - k_5x_4 - k_6x_4 + k_9x_8
\dot{x}_5 = -k_{10}x_1x_5 + k_3x_3 - k_4x_5 + k_7x_6 + k_{12}x_7
\dot{x}_6 = -k_{11}x_1x_6 + k_5x_4 - k_7x_6 + k_{13}x_8
\dot{x}_7 = k_{10}x_1x_5 - k_8x_7 - k_{12}x_7
\dot{x}_8 = k_{11}x_1x_6 - k_9x_8 - k_{13}x_8$$

Equations Mechanism 2

$$Y_1 = x_7$$
 $Y_5 = x_9$ $Y_2 = x_8$ $Y_6 = x_{10}$

Assuming mass-action kinetics:

$$\begin{split} \dot{x}_1 &= -k_{12}x_1x_4 - k_{14}x_1x_6 + k_1x_2 - k_2x_1 + k_8x_7 + k_{10}x_9 + k_{16}x_7 + k_{18}x_9 \\ \dot{x}_2 &= -k_{13}x_2x_4 - k_{15}x_2x_6 - k_1x_2 + k_2x_1 + k_9x_8 + k_{11}x_{10} + k_{17}x_8 + k_{19}x_{10} \\ \dot{x}_3 &= -k_3x_3 + k_6x_4 + k_8x_7 + k_9x_8 \\ \dot{x}_4 &= -k_{12}x_1x_4 - k_{13}x_2x_4 + k_4x_5 - k_5x_4 - k_6x_4 + k_{16}x_7 + k_{17}x_8 \\ \dot{x}_5 &= k_3x_3 - k_4x_5 + k_7x_6 + k_{10}x_9 + k_{11}x_{10} \\ \dot{x}_6 &= -k_{14}x_1x_6 - k_{15}x_2x_6 + k_5x_4 - k_7x_6 + k_{18}x_9 + k_{19}x_{10} \\ \dot{x}_7 &= k_{12}x_1x_4 - k_8x_7 - k_{16}x_7 \\ \dot{x}_8 &= k_{13}x_2x_4 - k_9x_8 - k_{17}x_8 \\ \dot{x}_9 &= k_{14}x_1x_6 - k_{10}x_9 - k_{18}x_9 \\ \dot{x}_{10} &= k_{15}x_2x_6 - k_{11}x_{10} - k_{19}x_{10} \end{split}$$

Switch virulence vs biofilm

For mechanism 1, we have that:

$$\dot{x}_1 + \dot{x}_2 + \dot{x}_7 + \dot{x}_8 = 0$$
$$\dot{x}_3 + \dot{x}_4 + \dot{x}_5 + \dot{x}_6 + \dot{x}_7 + \dot{x}_8 = 0$$

Given the total amounts $\mathrm{RetS}_{\mathrm{TOT}}$ and $\mathrm{GacS}_{\mathrm{TOT}}$, the solutions/dynamics are contained in the affine space:

$$x_1 + x_2 + x_7 + x_8 = \text{RetS}_{\text{TOT}}$$

 $x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = \text{GacS}_{\text{TOT}}$

"Switch" between biofilm and virulence/planktonic mode:

Question1(multistationarity): Are there more than one steady state on such affine space?

Question2(bistability): Are at least two of them asymptotically stable?

Multisationarity

Proposition

Mechanism 1 is multistationary if and only if

$$k_1k_3k_4k_{13} + k_1k_3k_6k_{13} + k_1k_4k_6k_{13} + k_3k_4k_5k_{10} + k_3k_4k_{10}k_{13} + k_3k_6k_{10}k_{13} + k_4k_6k_{10}k_{13} < k_4k_5(k_1k_{10} + k_3k_{13} + k_{10}k_{13})$$

Mechanism 2 is multistationary if and only if \mathbf{k} satisfies even a bigger condition.

Proof.

Apply procedure elaborated by Conradi, Feliu, Mincheva and Wiuf in "Identifying parameter regions for multistationarity" (CFMW17). Caution: A parametrization of the steady states variety is required.

Problem1: Not so insightful conditions.

Problem2: Deciding stability is computationally unfeasible.

Even simpler models

Mechanism 1:

$$RetS_o + GacS_{po} \longrightarrow X_1 \longrightarrow RetS_p + GacS_{oo}$$

 $RetS_o + GacS_{pp} \longrightarrow X_5 \longrightarrow RetS_p + GacS_{op}$

Mechanism 2:

Consider all the possible networks without some of the intermediate spices X_1 , X_5 , Y_1 , Y_2 , Y_5 or Y_6 .

Multisationarity

Mechanism 1:

Mechanism 2:

Intermediates	Multist.		Intermediates	Multist.
00	yes		00.00	no
01	yes		00.01	yes
10	yes		00.10	yes
11	yes		00.11	yes
			01.00	no
			10.00	no
			11.00	no
			01.01	yes
			01.10	yes
			01.11	yes
Observation: For mechanism 2, it is only ${ m RecS}$		10.01	yes	
inhibiting ${ m GacS_{pp}}$ which enables			10.10	yes
multistationarity!			10.11	yes
			11.01	yes
Now, stability becomes computationally feasible			11.10	yes
(but for the nex	t talk).		11.11	yes

References I

- [BBH+19] Sophie Bouillet, Moly Ba, Laetitia Houot, Chantal lobbi-Nivol, and Christophe Bordi, Connected partner-switches control the life style of pseudomonas aeruginosa through rpos regulation, Scientific Reports 9 (2019), no. 1.
- [BRA+14] Hayette Benamara, Christophe Rihouey, Imen Abbes, Mohamed Amine Ben Mlouka, Julie Hardouin, Thierry Jouenne, and Stéphane Alexandre, *Characterization of membrane lipidome changes in pseudomonas aeruginosa during biofilm growth on glass wool*, PLoS ONE **9** (2014), no. 9, e108478.
- [CFMW17] Carsten Conradi, Elisenda Feliu, Maya Mincheva, and Carsten Wiuf, *Identifying parameter regions for multistationarity*, PLOS Computational Biology 13 (2017), no. 10, e1005751.

References II

- [FWFJ+18] Vanessa I. Francis, Elaine M. Waters, Sutharsan E. Finton-James, Andrea Gori, Aras Kadioglu, Alan R. Brown, and Steven L. Porter, Multiple communication mechanisms between sensor kinases are crucial for virulence in pseudomonas aeruginosa, Nature Communications 9 (2018), no. 1.
 - [PS09] Olga E. Petrova and Karin Sauer, *A novel signaling network essential for regulating pseudomonas aeruginosa biofilm development*, PLoS Pathogens **5** (2009), no. 11, e1000668.