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No digáis que, agotado su tesoro,
de asuntos falta, enmudeció la lira;
podrá no haber poetas; pero siempre
habrá poesía.

Mientras las ondas de la luz al beso
palpiten encendidas,
mientras el sol las desgarradas nubes
de fuego y oro vista,
mientras el aire en su regazo lleve
perfumes y armonías,
mientras haya en el mundo primavera,
¡habrá poesía!

Mientras la ciencia a descubrir no alcance
las fuentes de la vida,
y en el mar o en el cielo haya un abismo
que al cálculo resista,
mientras la humanidad siempre avanzando
no sepa a dó camina,
mientras haya un misterio para el hombre,
¡habrá poesía!

Mientras se sienta que se ríe el alma,
sin que los labios rían;
mientras se llore, sin que el llanto acuda
a nublar la pupila;
mientras el corazón y la cabeza
batallando prosigan,
mientras haya esperanzas y recuerdos,
¡habrá poesía!

Mientras haya unos ojos que reflejen
los ojos que los miran,
mientras responda el labio suspirando
al labio que suspira,
mientras sentirse puedan en un beso
dos almas confundidas,
mientras exista una mujer hermosa,
¡habrá poesía!

–Gustavo Adolfo Becquer
1836 – 1870





To all my friends around the world and to my soulmate, Àngels





ABSTRACT

In this work we generalise clusters of points of a scheme to the relative
se�ing, that is, we introduce clusters of sections of a family. When the family
is smooth, we are able to show that there is a scheme parametrising its
clusters of sections of length r. We called it the universal scheme of clusters
of sections Clr. Such schemes are a generalisation of Kleiman’s iterated blow
ups (which parametrise clusters of points).

We present the first steps towards an iterative construction of the scheme
Clr+1 form Clr. We show that there is a morphism F : Clr+1 Clr×Clr−1 Clr

(related to blowing up the diagonal) and a stratification of Clr×Clr−1 Clr
such that, via F, every irreducible component of Clr+1 is either (a) birational
to the closure of a stratum or (b) composed entirely of clusters whose (r+ 1)-
th section is infinitely near to the r-th. Moreover, each type (a) irreducible
component is a blow up of the closure of a stratum along a suitable sheaf of
ideals, which fails to be Cartier only on the diagonal.

In order to clarify such iterative construction, we characterise the mor-
phism F restricted to the union of type (a) irreducible components via a
universal property. It is a generalisation of blow ups, which we call the blow
up split section family. Roughly speaking, it combines the universal proper-
ties of blow ups and universal section families. We show that it exists under
finite and projective conditions and that it exhibits some sort of birationality
similar to F.

Meanwhile, we need to develop some auxiliary results and constructions
lacking in the bibliography. For example, we show that, under certain as-
sumptions, the blow up of a product of schemes along a locally principal
subscheme preserve the product form. Given a family of schemes π :X Y

and a morphism α :X T , we define (via a universal property) and prove
the existence of a scheme parametrising those sections of π contained in
some fibre of α. We also define (via a universal property) and prove the
existence of a closed subscheme Z of Y such that α restricted to X×Y Z is
constant along the fibres of the projection X×Y Z Z.
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CONVEN T IONS AND TERM INOLOGY

“When I use a word,” Humpty Dumpty said in
rather a scornful tone, “it means just what I
choose it to mean –neither more nor less.”
“The question is,” said Alice, “whether you can
make words mean so many di�erent things.”
“The question is,” said Humpty Dumpty, “which is
to be master –that’s all.”

–Lewis Carroll
Through the Looking–Glass

Let C be a small category and A,B objects of C . We denote the set of
arrows form A to B by C(A,B), the identity of A by 1A and the inverse of
an isomorphism f :A B by f−1. By a one-to-one correspondence between
two sets we mean a one-to-one and onto map between them.

Let X, Y be schemes. We denote the underlying reduced subscheme of X
by Xred. Given a point x of X, we denote by κ(x) its residue field, by {x} the
scheme Spec(κ(x)) and by x the schematic image of the natural morphism
Spec(κ(x)) X (see Definition 1.46).

Given a morphism f :X Y and an open or closed subscheme Z of Y, we
denote by Im(f) the schematic image of f, by bl(Z, Y) the blow up of Y along
Z and by f−1(Z) the pullback of Z Y by f (which is an open or closed
subscheme of X). Given a section σ : Y X of f, we denote again by σ the
closed subscheme of X image of σ. We denote by Xσ X the blow up of X
along σ.
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I N TRODUCT ION

Infinitely near points are a nice and
old idea for describing singularities.

–Eduardo Casas-Alvero
Singularities of Plane Curves

clusters of sections

Infinitely near points appear already in the work of M. Nöther (introduced
in [50, 51]) and their geometry was extensively developed by Enriques ([16,
Book IV]). A modern account was given by Casas-Alvero in [7], introducing
clusters of infinitely near points as the adequate notion to consider collec-
tions of infinitely near points. As usual in Algebraic Geometry, it becomes
natural, and for some applications necessary, to study algebraic families of
clusters of infinitely near points, which leads to the question of existence of
universal parameter spaces for them; these are Kleiman’s iterated blowups
first introduced in [38]. This memoir deals with families of clusters and their
parameter spaces in a relative se�ing, where sections of a family replace
points of a variety or scheme. Doing so, we follow the general philosophy
put forward by Grothendieck in his Éléments de Géometrie Algébrique”, but
at the same time we are motivated by possible applications to the study of
linear systems, see Future work.

Given a separated morphismπ :X Y, an ordered cluster, or for simplicity
a cluster, overπ is an r-tuple (t1, . . . , tr) where t1 is a Y-point ofX1 = X, and
where ti, for i > 1, is a Y-point of the blow up1 Xi of Xi−1 along ti−1. When
ti is, in fact, a Y-point of the exceptional divisor of Xi or of the pullback of
the exceptional divisor of Xj for some j > i, we say that ti is infinitely near
to tj. Since our definition di�ers from the standard one given in [7], some
remarks on the di�erences may be in order.

• In [7], Y is the spectrum of the field of complex numbers, and X is a
germ of complex surface. Generalising the definition to our relative
context is straightforward, but it will become clear in the course of
this work that some hypotheses on the morphism π are needed to
obtain a well-behaved notion.

• When blowups commute, as is the case for blowups of surfaces along
non infinitely near points, it is natural to identify clusters which di�er
only on the ordering of their points. Thus in the definition of [7] the

1 Classically, infinitely near points were defined by means of di�erent birational transforma-
tions (e.g., the most used was ordinary quadratic transformations).
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4 introduction

points forming the cluster form a set (with a partial order given by
infinitely-near-ness) rather than an ordered tuple. However, for our
purpose of later dealing with families of clusters, reorderings which
may be admissible on general fibres need not extend to the whole
family. For this reason it becomes more natural to work with the
ordered version of clusters (and we follow the standard practice in the
literature on families of clusters in doing so).

• Furthermore, [7] requires every point in a cluster to be infinitely near
to the first one (which is in fact the reason for the choice of the word
“cluster”). Again, since infinitely-near-ness between points may vary
among the clusters in a family, imposing this condition in the defini-
tion of cluster becomes a burden when working in family and is usually
avoided. The notion obtained by dropping it as we do is sometimes
called “multi-cluster” but for simplicity we will adhere to the conven-
tion of [58] and call these objects simply clusters.

Let us now explain the notion of a family of clusters over π parametrised
by a Y-scheme T , which we also call a T -family of clusters over π. It can be
defined simply as a cluster (t1, . . . , tr) over the base change of π to XT T .
That is, a family of clusters is given by a sequence of blow ups

(XT )r+1 (XT )r . . . XT T

X Y,

p

where the centre Ci ⊆ (XT )i of the blow up (XT )i+1 (XT )i is the image
of the section ti of (XT )i T . Given a Y-point of T , Y T , and assuming
when needed that blow ups commute with base changes1, the Cartesian
diagram

Xr+1 Xr . . . X Y

(XT )r+1 (XT )r . . . XT T

X Y

p p p

p

illustrates how the pull back byY T of the sequence of T -points (t1, . . . , tr)
is a cluster over π. Thus, Y-points of T parametrise clusters over π, and the
set of all such parametrised clusters form the T -family.

Starting from the morphism π, Kleiman [38, Section 4.1, p.36] constructed
inductively a sequence of (separated) morphisms fr :Xr+1 Xr for r > 0

as follows.2 Define f0 :X1 X0 to be π :X Y. Now, assume fr−1 defined.
Consider the Cartesian product of Xr with itself over Xr−1 and consider its

1 This is one of the main technicalities we face in this work.
2 We reproduce the construction word by word as it is done in [38].
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diagonal subscheme ∆, which is a closed subscheme because fr−1 is separ-
ated. Define Xr+1 to be the corresponding residual scheme and define fr to
be the composition of the structure map p and the second projection p2.

Xr+1= R(∆,Xr ×Xr−1 Xr)

Xr Xr ×Xr−1 Xr ∆

Xr−1 Xr

p

fr−1

p1

p2
q

fr−1

This construction1 is commonly known as Kleiman’s iterated blow ups. Klei-
man’s motivation came from some enumerative formulas for multiple points
of the morphism π; later in [30, Proposition I.2, p.104], Harbourne realised
that, in a di�erent context2, Kleiman’s iterated blowups could be used as
parameter spaces for rational surfaces with fixed Picard number, essentially
by parametrising clusters of fixed length over the morphism π : P2k
Spec(k).

The idea of using iterated blowups to parametrise clusters on smooth sur-
faces was further developed by Roé [58] for smooth surfaces π :X Spec(k),
and by Kleiman and Piene [41] for smooth families π :X S of geometric-
ally irreducible surfaces. It has found successful applications, especially in
relative dimension 2, not only for its original motivation to enumerative
geometry [38–40, 53, 54], but also in the study of linear systems of singular
curves, [31, 56, 57, 59], of adjacencies of singularity types [1], or moduli
spaces of polynomials [19]. The relations between Kleiman’s iterated blow
ups (the schemes Xr) and Hilbert schemes of points (the components of the
Hilbert scheme HilbX/Y parametrising Y-points of X) became a recurring
theme [17, 52, 56] which was clarified in [41].

Let now S be a ground scheme and assume that π is an S-morphism; in
this situation, rather than a sequence of arbitrarily near Y-points of the Y-
scheme X, a cluster over π can be understood as a sequence of arbitrarily
near sections of the S-morphism π. With this perspective, a family of clusters
over π parametrised by a S-scheme T must be a cluster of the base change
πT :XT YT of π by T S: this is what we call a T -family of section-clusters
over π. So now, the objects parametrising the clusters in the family are the
S-points of T , again if, when required, blow ups commute with base changes.

The whole purpose of this memoir is to develop the analogous machinery
of Kleiman’s iterated blowups in this relative se�ing. Our approach, taking
the point of view of universal families and representable functors, is closest
in spirit to that of [30] and [58], even though Harbourne goes even further

1 In [38], the schemes Xr are called r-derived scheme of X Y.
2 An r-fold point of π is a point which has the same image as r− 1 others. If π is an immersion,

for instance, one expects finitely many such points, so that they can be counted; but then
X has no Y-points and there are no clusters over π. In Harbourne’s context instead, π is a
submersion (smooth).
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in the case of P2, considering isomorphisms between fibres of the universal
family and the corresponding moduli problem, which gives rise to a quotient
stack. We do not deal with these issues here.

Part of our representability results, with somewhat more restrictive hy-
potheses, have already appeared in print as [6]. An important intermediate
step to explicitly build the universal families of section-clusters, which we
call the blow up split section family (see below), has potential applications to
other algebro-geometric problems. Its definition and existence are explained
in the preprint [5], submi�ed for publication.

The organisation of this work in chapters is as follows. The main res-
ults are presented in the last chapter. The preceding chapters develop the
techniques and constructions motivated by the problem of representing the
functors under consideration, including the blow up split section family. We
next describe in detail the content of each chapter; for the sake of motivation,
we do it in reverse order.

Chapter 5. Clusters in family

Let S be a ground scheme and let π :X Y be an S-morphism. In Sec-
tion 5.1, we give the formal definition of families of clusters of sections of π.
We overcome the technicality that blow ups do not commute with arbitrary
base changes by imposing regularity conditions on π, which lead us to the
notion of steady family, see Definition 5.15. Under such conditions, families
of section-clusters over π form a contravariant functor Cl r :SchS Set,
the functor of the parameter space problem for families of section-clusters,
introduced in Section 5.2. When it is representable, we denote the represent-
ing scheme by Clr and we call it the r-th universal scheme of section-clusters
over π (or r-Ucs for short). We present the functor Cl r as a subfunctor of the
Hilbert functor HilbX/S and we show that it is a subfunctor representable
by locally closed embeddings, see Lemma 5.21. This way we reduce the rep-
resentability of Cl r to that of HilbX/S, which gives the following existence
theorem.

Theorem 5.19. Let S be a ground scheme and r > 1 an integer. Let π :X Y

be a steady S-family. If Y is proper andX is an at most countable disjoint union
of quasiprojective schemes, then the r-Ucs Clr over π exists and the scheme Clr

is an at most countable disjoint union of quasiprojective schemes.

Kleiman’s iterated blow ups Xr can be identified as our Clr when Y S

is the identity, that is Y = S. In Section 5.4 we show that, when Y S is
smooth, similarly to Kleiman’s iterated blow ups, a recursive construction
of Clr+1 from Clr is possible.

More precisely, there is a morphism F : Clr+1 Clr×Clr−1 Clr and a strat-
ification of Clr×Clr−1 Clr, where the diagonal ∆ is a distinguished stratum,
such that

Corollary 5.38.1. Each irreducible component Z of Clr+1 is either
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(a) composed entirely of clusters whose (r+ 1)-th section is infinitely near
to the r-th and F(Z) ⊆ ∆,

(b) birational to an irreducible component of the closure C of a stratum,

that is, F|Z :Z C decomposes as Z
i
C̃ C where i is an open

embedding and C̃ is a blowup of C whose centre fails to be Cartier only
on ∆. In particular, if C∩∆ is empty, Z is an open subscheme of C.

We have a quite accurate explicit description of the strata, but not on the
sheaf of ideals centre of such a blow up.

Chapter 4. The blow up split section family

Theorem 5.19 with more restrictive assumptions and Corollary 5.38.1 were
firstly obtained by hand and published as [6]. In this work, they are more
systematically presented, relying on a new notion, the blow up split section
family (or blow up §family for short), which we introduce in Chapter 4 with
the aim to shed light on such a recursive construction. In short, the mor-
phism from the union of all type (a) irreducible components to the whole
scheme Clr×Clr−1 Clr is a blow up §family, which incorporates the strat-
ification of Clr×Clr−1 Clr and strata-wise it is the corresponding blow up
(see Theorem 5.37 and Corollary 5.38.1).

We define the blow up §family and prove its existence in greater generality.
Let X and Y be S-schemes and Z a closed subscheme of XY = X ×S Y.
The blow up §family of the projection π :XY Y along Z is a X-scheme
B b X such that the pullback of Z by (b× 1Y) :BY XY is an e�ective
Cartier divisor of BY and satisfying a suitable universal property. Roughly
speaking, it combines the universal properties of the universal section family,
or Weil restriction, of π and of the blow up of XY along Z. When Y = S,
we recover the classic blow up, but in general new phenomena may appear.
For example, the resulting morphism b× 1Y is not necessarily birational or
even generically finite, see Section 4.1.

We prove that the blow up §family exists under some finiteness assump-
tions.

Theorem 4.3. Assume all the schemes locally Noetherian. If XY is at most a
countable disjoint union of quasiprojective schemes over S, X S is separated
and Y S is proper, flat and with geometrically integral fibres, then the blow
up §family of π along Z exists.

Our proof of Corollary 5.38.1 stated above uses the following analogous
result for blow up §families, which is our result on the structure for such
morphisms. It generalises the fact that a blow up is an isomorphism away
from its centre.

To state it we need to introduce some notation. Assume Y quasiprojective
over S. Let X = tΦ∈Q[t]XΦ be the fla�ening stratification of the morphism
Z X. One of the strata, X0 which we call the core, plays a special role,
see Definition 4.7. Moreover, for every Φ, the points x ∈ XΦ for which
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Zx (XY)x = Yx is an e�ective Cartier divisor form a (possibly empty)
open subscheme of XΦ; we denote it by UΦ.

Theorem 4.8. Assume X connected, Y integral, Noetherian and projective and
flat over S. Assume that the blow up §family (B,b) of π along Z exists. Then,
the open subscheme B \ b−1(X0) of B is isomorphic to tΦUΦ.

The chapter ends with some examples.
These results are contained in the preprint [5], submi�ed for publication.

Chapter 3. Building blocks

In Chapter 3, we introduce the f-constantify (or f-constfy for short) closed
subscheme of Y –which is based on the functor Iso (see Definition 3.14) and
the notion of ℵ1-morphism (see Definitions 3.7 and 3.9)– and the universal
split section family, fundamental steps for the construction of the blow up
§family construction and the schemes Clr.

Let X, Y and W be S-schemes and let f be an S-morphism from XY =

X ×S Y to W. The f-constfy closed subscheme Y ′ of Y satisfies that the
restriction f|X×YY ′ is constant along the fibres of the projectionX×Y Y ′ Y ′

plus a universal property. We prove its existence under weak assumptions.

Theorem 3.21. Let S be a ground scheme. Let p :X Y and f :X W be
S-morphisms. Consider the following Cartesian diagram.

Z W

X×Y X W ×SW

p
∆W/S

f×Yf

Set g :X×Y X Y. If W is separated over S and p is flat and proper, then
the f-constfy closed subscheme of Y exists and it is the scheme representing the
functor IsoZg .

The existence of the f-constfy closed subscheme of Y follows from the
representability of the functor Iso, which encodes the morphisms T Y

such that ZT X ×Y T is an isomorphism. The representability of this
functor has been studied in the literature, but explicit constructions for the
representing scheme are lacking. The class of ℵ1-morphisms is introduced
to fill this gap. The main property that allows an explicit description for
the representing scheme of Iso is that arbitrary schematic unions commute
with pullbacks by ℵ1-morphisms, see Theorem 3.13.

Theorem 3.17. Let p :X Y be a morphism and Z a closed subscheme of X.
LetΩ denote the set of closed subschemesW of Y such that ZW XW is an
isomorphism and denote by ΣΩ the closed subscheme ΣW∈ΩW of Y. If p is
ℵ1-projective, then the scheme ΣΩ represents the functor IsoZp .

The f-constfy construction allow us also to describe, for now set theoret-
ically, where type (b) irreducible components of Clr emerge from, the ones
missing in the blow up §family.
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Coming back to the representability of the functor Cl r, it is based on
its identification with another functor we introduce, the split section family
(see Definition 3.24). It is a subfunctor of the functor of sections represent-
able by closed embeddings, which in turn is a subfunctor of a Hilbert functor
representable by open embeddings. The goal of this construction is to para-
metrise sections of a morphism π :X Y, but just those sections whose
image is contained in some fibre of a morphism α :X T . We consider α :
X T as a morphism spli�ing the ambient space X by means of its fibres.
So, the universal split section family is the scheme solving the parameter
space problem of sections of π whose image is contained in some fibre of α.

Theorem 3.26. If S is Noetherian, T is separated, X is at most a countable
disjoint union of quasiprojective schemes over S, Y flat and proper over S, then
the universal split section family of π exists and its underlying scheme is locally
Noetherian and at most a countable disjoint union of quasiprojective schemes.

Chapter 2. Technicalities on blow ups

The construction of the blow up §family consists of three steps, first we
consider a blow up, second the universal split section family of such a blow
up and, as a final step, we blow up a product of schemes X×S Y along a
locally principal subscheme, which we need to preserve the product form.
Hence, we need to study when the product form is preserved under blow
ups along locally principal subschemes, which we do in Section 2.1.

We formalise the idea that blowing up a locally Noetherian scheme along
a locally principal subscheme consists in shaving o� those associated points
of the ambient scheme lying on the locally principal subscheme. We also
show that, assuming Y S flat and with geometrically integral fibres, there
is a one-to-one correspondence between the associated points ofX and those
of its base change X×S Y. This all yields the following result.

Theorem 2.8. Assume all schemes are locally Noetherian. Let S be a ground
scheme. Let X f S and Y g

S be S-schemes. Let Z be a locally principal
subscheme of X ×S Y. Assume that Y g

S is flat and with geometrically
integral fibres. Then, there is a closed subscheme i :W X such that the
closed embedding iY :W ×S Y X×S Y is the blow up of X×S Y along Z.

If furthermore Y S is an fpqc morphism, for every S-morphism T h ′ X

for which the preimage of Z by h ′Y : T ×S Y X×S Y is an e�ective Cartier
divisor, there is a unique morphism h : T W such that i ◦ h ′ = h. Moreover,
hY : T ×S Y W ×S Y is the morphism given by the universal property of the
blow up iY .

Chapter 2 also includes an exposition of the conditions under which blow
ups do commute with arbitrary base changes.
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Chapter 1. Assorted preliminaries

Chapter 1 introduces the basic constructions, and the notation, widely used
in later sections. It also includes an original result, Section 1.3.1, which
explores the scheme-theoretic consequences of the set-theoretic definition
of a constant morphism. Namely, a map f :X Y is constant if there is
a unique y ∈ Y such that f(x) = y for every x ∈ X, in this case, if f is a
morphism of schemes, we call f naively constant through the point y. We
prove the following result.

Theorem 1.53. Let f :X Y be a morphism with X quasi-compact. The
morphism f is naively constant through a point y0 of Y if and only if it factors
through a morphism Z Y where the underlying topological space of Z is a
point and the underlying reduced subscheme Zred of the schematic closure Z
of Z Y is equal to the schematic closure of Spec(κ(y0)) Y. Moreover, if
y0 is a closed point of Y, then the morphism Z Y is a closed embedding.



F U T URE WORK

If we could first know where we
are, and whither we are tending,
we could then be�er judge what
to do, and how to do it.

–Abraham Lincoln
A House Divided

Due to the technical complexity of some of our results, it hasn’t been
possible to a�ack within the time span of elaborating this thesis the problems
which first motivated our study. We hope to be able in the near future to
address at least some of them.

Theorem 5.37 asserts that the underlying topological space of Clr+1 can
be recovered from that of the blow up §family of Clr×Clr−1 Clr (along a
suitable closed subscheme) and of the universal split section family of the
exceptional divisor of Xrr+1 (see Definition 5.16). At the end of Section 5.4,
we give evidences that the scheme structure of Clr+1 may be recovered from
such two schemes. We hope that studying the e�ect of blow ups of a projec-
tive scheme on its Hilbert scheme, which would be interesting on its own,
could bring some insight on the problem.

The relationship between Kleiman’s iterated blow ups and Hilbert schemes
of points has been a recurring theme in applications, eventually clarified
in [41]. It is natural to hope that the analogous forgetful maps (eliminating
the ordering of the Y-points) from the universal schemes Clr will be useful in
the study of the components of the Hilbert scheme HilbX/S parametrising
sections of π. Some examples, like Example 5.42 and related computations,
suggest that the schemes Clr can be especially useful in the study of Cohen-
Macaulay Hilbert schemes.

As explained in [7], the whole set of infinitely near points of a Y-point t1
of π provides a sort of infinitesimal space which displays the local geometry
at t1 of π. So, Kleiman’s iterated blow ups encode all the infinitesimal in-
formation of the Y-scheme X, up to some order r, similarly to Semple towers
(see [11, 12, 44]) or Jet schemes (see [13, 36] and Nash’s original work [49]).
It would be interesting to explore the connections between these di�erent
spaces, both in the absolute and in the relative se�ings.

As mentioned above, one of the successful applications of Kleiman’s it-
erated blowups has been to the study of linear systems of singular curves;
these applications o�en rely on the principle of semicontinuity, applied to
an appropriate relative divisor on Xr+1 Xr (see [31, 56, 57, 59]). Another
successful approach in that context, introduced by Ciliberto and Miranda
in [8, 9], is to apply the principle of semicontinuity to a relative divisor on

11
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a degeneration of the surface X, i.e., a family X ′ S whose general fibres
are isomorphic to X and with a fibre which splits as a union of two or more
components. It is then o�en simpler to analyse the system on the special
fibre, as it splits in two or more “smaller” systems. Using a degeneration for
such purposes involves the judicious choice of a set of sections of the de-
generation; since our work provides a natural universal parameter space for
such sets of sections (allowing infinitely near ones), it should be possible to
combine both approaches to obtain a be�er understanding of linear systems
of singular surfaces. The method of degenerations has also been applied to
the computation of “collisions” (that is, adjacencies in the Hilbert scheme of
points) in [10] but with important restrictions to the presence of infinitely
near points in the general fibres. The techniques now available might also
help eliminate such restrictions.



1
ASSORTED PREL IM INAR I E S

The opening is where you plan
your strategy. Where you place
your initial stones determines
the type of game you will play.

–Richard Bozulich
The second book of GO

This chapter introduces well-known constructions and sets notation, widely
used in the later chapters.

1.1 category theory.

This section introduces many constructions in Category Theory. Most of
them will be used with no reference. For a more detailed treatment of Sec-
tions 1.1.1 and 1.1.2, we refer to [55] and [43] for modern and friendly refer-
ences and to [46] as the classic reference. For a more detailed treatment of
Section 1.1.3, we refer to [18, Chapter 2, pp.13–40].

Unless otherwise stated, by a category we mean a locally small category,
that is, the collection of arrows between two objects always forms a set.

1.1 .1 Representability and universal properties

A related classical antecedent [to
Yoneda’s lemma] is a result that
comforted those who were troubled by
the abstract definition of a group:
namely that any group is isomorphic to a
subgroup of a permutation group

–Emily Riehl
Category Theory in Context

Representability of functors and universal properties (terminal and initial
objects) are central for us. This section reviews these two notions, from
Yoneda’s lemmas to their equivalence via the category of elements and the
constant functor.

Definition 1.1. A functor F :C D is full (resp. faithful) if for every pair
of objects C and D of C the map C(C,C ′) D(F C, F C ′) is surjective
(resp. injective). When F is both full and faithful it is called fully faithful
for short (see [55, Remark 1.5.8, p.31]).

13
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Definition 1.2. An equivalence between categories C and D consists of
functors F :C D and G :D C together with natural isomorphisms
1C

∼= GF and 1C
∼= F G . Categories C and D are equivalent if there is

an equivalence between them.1

Remark 1.2.1. Given a functor F :C D and two objects C, C ′ of C , if
C, C ′ are isomorphic then F C, F C ′ are isomorphic as well. If moreover
F is fully faithful, then C, C ′ are isomorphic if and only if F C, F C ′ are
isomorphic.

Definition 1.3. A functor F :C D is essentially surjective on objects if
for every objectD of D there is an object C of C such thatD is isomorphic
to F C.

Theorem 1.4 below is well-known, we introduce it in order to clarify the
meaning of Yoneda’s lemma (see [55, Theorem 1.5.9, p.31]).

Theorem 1.4. A functor defining an equivalence of categories is fully faithful
and essentially surjective on objects. Assuming the axiom of choice, every
functor with these properties defines an equivalence of categories.

Definition 1.5. Let C be a category and C an object of C . The functor of
points of C, denoted by hC, is the contravariant functor on C with values in
Set, the category of sets, that sends an object D of C to the set C(D,C),
and an arrow f ∈ C(D,D ′) to the map

f∗ : hC(D ′) hC(D)

g g ◦ f.

Definition 1.6. Let C be a category. The Yoneda embedding is a covariant
functor on C with values in the (non-necessarily locally small) category
SetC of functors on C with values in Set. Over objects, it is defined as

h : C SetC

C hC,

and over arrows as sending (f :C C ′) ∈ C(C,C ′) to the following natural
transformation hf : hC hC ′ . Given an object D of C , the map hf(D) is

f∗ : hC(D) hC ′(D)

g f ◦ g.

The following two lemmas are well-known, see [55, Theorem 2.2.4, p.57]
or [18, pp.13, 14].

Lemma 1.7 (Yoneda, weak version). Let C be a category. The Yoneda em-
bedding h :C SetC is a fully faithful functor.

Remark 1.7.1. By Remark 1.2.1 and weak Yoneda’s lemma, two objects C,
C ′ of a category C are isomorphic if and only if the functors hC and hD are
isomorphic as well.

1 Two categories are equivalent when they are isomorphic as objects in the 2-category of
categories, functors and natural transformations.



1.1 category theory. 15

Lemma 1.8 (Yoneda). Let F :C Set be a contravariant functor. Let C be
an object of C and ξ an element of F C. Given an object D of C , the map

τξ(D) : hC(D) F (D)

g F (g)(ξ)

is natural on D, that is it determines a natural transformation from hC to
F . Moreover, the assignment ξ τξ determines one-to-one correspondence
between F (C) and SetC(hC, F ).

Definition 1.9. Let F :C Set be a contravariant functor on a category
C with values in sets. A representation of F is a couple (C, ξ) with C an
object ofC andξ an element of F C such that τξ : hC F C (see Lemma 1.8)
is a natural isomorphism. The object C is called a representing object. The
functor F is called representable when such a representation exists. When
F corresponds to a parameter space problem, ξ is called a universal family.

For a category C , the collection of all representable functors form a full
subcategory of SetC and weak Yoneda’s lemma establishes that C is equi-
valent to it.

Definition 1.10. Let C be a category and C an object of C . The object C
is terminal (resp. initial) in C if for every object D of C there is a unique
arrow from D to C (resp. from C to D).

Given a category C , if there are two terminal objects C andC ′ in C , then
there is a unique arrow f in hC(C ′) and a unique arrow g in hC ′(C). The
arrows g ◦ f and f ◦ g are the corresponding identity arrows of C and C ′

because these are the unique arrows in hC(C) and hC ′(C ′). That is, when it
exists, a terminal object is uniquely determined up to a unique isomorphism
and, taking some liberty with the language, terminal objects are usually
referred as the terminal object of a category.

Many times, we will define an object as the terminal object of a suitable
category. In this cases, we will emphasise the previous observation with the
sentence “by abstract nonsense such an object is uniquely determined up to
a unique isomorphism”.

Example 1.11. In the categorySet, every set with one element is a terminal
object and between every pair of them there is a unique bijective map, so
we represent the terminal object of Set by {∗}. In Set the empty set is an
initial object, there is a unique map from it to any set.

Example 1.12. In the category Rings, the zero ring, a ring with one ele-
ment where the additive and multiplicative neutral elements agree, is a
terminal object.

In the category Rings, the ring of integers Z is an initial object, given
a ring A, a homomorphism Z A is determined by the image of 1 ∈ Z,
hence there is a unique homomorphism Z A.
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Example 1.13. By previous examples, the empty scheme, whose ring of
functions is the zero ring, is an initial object in the category of schemes.

And an immediate consequence is that Spec(Z) is a terminal object in the
category of a�ine scheme, and in fact it is a terminal object in the category
Sch, we leave the details on gluing morphisms.

Definition 1.14. Let F :C Set be a contravariant functor on a category
C with values in sets. The category of elements of F , denoted by

∫
F , is the

category whose objects are couples (C,η) with C an object of C and η an
element of F (C). Arrows (C,η) (C ′,η ′) in

∫
F are arrows f ∈ C(C,C ′)

such that F (f)(η ′) = η.
Equivalently, the category

∫
F may be defined as the comma category

between functors (h ↓ F ) or the opposite category to the comma category
(1 ↓ F ) (see [46, Chapter III] or [55, Exercise 1.3.vi, p.22 and §2.4, pp.66–72]).

Proposition 1.15. Let F :C Set be a contravariant functor on a category
C with values in sets, C an object of C and η an element of F (C). The couple
(C,η) represents F if and only if it is the terminal object of

∫
F .

Proof sketch. Assume that (C,η) represents F via a natural isomorphism
θ :F hC. Notice that η = θ(C)−1(1C). Then, given an object (D, τ) of∫

F there is a unique morphism f ∈ hC(D) such that θ(D)−1(f) = τ and

this is the unique morphism in
∫
F from (D, τ) to (C, θ).

Assume that (C,η) is a terminal object in
∫
F . That is, given an objectD

of C and an element τ ∈ F (D) there is a unique morphism f ∈ hC(D) such
that F (f)(τ) = η. So, a map θ(D) :F (D) hC(D) is defined as sending
τ ∈ F (D) to f ∈ hC(D), which is natural in D and in fact it is a natural
isomorphism.

Remark 1.15.1. The construction of the category
∫
F translates objects

representing F into terminal objects. Given a category C , there is a functor
F C solving the inverse problem, an object of C is terminal if and only if it
represents F C . Namely, the functor F C :C Set sends every object to
the terminal object of Set and every arrow to the identity (it can be seen as
the constant diagram ∆{∗} :C Set, see Example 1.22).

In general, such constructions are not inverse to each other. But there is
a case, with which we will work later (see Definitions 1.72 and 3.14), where
they almost are. Let C be a subcategory of a category D. Consider the
following condition,

. if D C is an arrow in D and C is an object of C , then D is also an
object of C , that is there are no arrows in D from objects outside C

to objects of C .

When C , D satisfy , we may consider the characteristic (contravariant)
functor F :D Set of C , that sends an object D of D to

F D =

{∗} if D is an object of C

∅ otherwise.
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And, by , it is well defined over arrows in the obvious way. Then, clearly∫
F = C and F C = F |C .

The following definition and its subsequent lemma provide a standard
criterion for the representability of functors on the category of schemes
Sch.

Definition 1.16. Let F :Sch Set be a contravariant functor on the
category of schemes with values in sets.

1. A subfunctor H ⊂ F is a rule that associates to every scheme T a
subset H (T) ⊂ F (T) such that the map F (f) :F (T) F (T ′) maps
H (T) into H (T ′) for all morphisms f : T ′ T .

2. Let H ⊂ F be a subfunctor. The subfunctor H ⊂ F is representable
by open (resp. closed) (resp. locally closed) embeddings if for all pairs
(T , ξ), where T is a scheme and ξ ∈ F (T) there is an open (resp.
closed) (resp. locally closed) subscheme Uξ ⊂ T with the following
universal property:

(∗) A morphism f : T ′ T factors through Uξ if and only if f∗ξ ∈
H (T ′).

Lemma 1.17. Let F :Sch Set be a contravariant functor on the category
of schemes with values in sets. Let H be a subfunctor of F representable by
open (resp. closed) (resp. locally closed) embeddings. If F is represented by
a scheme X, then H is also representable and the representing scheme is an
open (resp. closed) (resp. locally closed) subscheme of X.

Proof. We just show the case that H is representable by open embeddings.
Since we assume F representable, identifying F with hX, we may assume
that H is a subfunctor of hX representable by open embeddings. Hence,
for the couple (X,1X), where 1X ∈ hX(X), there is an open subscheme U
(obviously unique) satisfying the following universal property: A morphism
f : T X factorises through U X if and only if f∗1X = f ∈ H (T). Now,
just observe that if f factorises through U X via a morphism gf : T U,
then gf ∈ hU(T) is unique because U X is a monomorphism. Hence,
there is an assignment f ∈ H T with gf ∈ hU(T) which defines a natural
transformation, and in fact a natural isomorphism.

1.1 .2 Pullbacks and pushouts

Just when I thought I was out,
THEY PULL ME BACK IN.

–Silvio Dante imitates Al Pacino
The Soprano

Pullbacks in the category of schemes and (its dual for a�ine schemes)
pushouts in the category of commutative rings with unity are one of our
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basic tools to construct new morphisms. This section introduces the categor-
ical notion of pullback and pushout, and proves some of their categorical
properties.

Definition 1.18. Let C be a category and D a small category (that is, the
objects of D form a set). A diagram in C of shape D (or simply a diagram) is
a functor D :D C .

Given a diagram D :D C , the indexing category D is usually thought
of as a formal category just shaping the diagram.

Remark 1.18.1. Diagrams in C with shape D form a category, it is simply
the category CD, which by [55, Remark 1.7.3, p.44] is locally small. That is,
natural transformations between two diagrams form a set.

Example 1.19. Let sq denote the category

• •

• •

with four objects and five non-identity arrows, which respect compositions.
A diagram of shape sq corresponds to the common notion of a square dia-
gram that commutes. We will omit the diagonal arrow.

Example 1.20. Let pb denote the category

• • •

with three objects and two non-identity arrows with common codomain. A
diagram of shape pb corresponds to a pair of arrows with common codomain.

Example 1.21. Consider the category pb with labels a b c and 1
2 3. The objects of the category pb× pb are the ordered couples (a, 1),
(a, 2), (a; 3), (b, 1) . . . And an arrow between two couples corresponds to
a pair of arrows in pb between the first and the second members of the
couples. So, the shape of a diagram indexed by this category is as follows.

(a, 1) (b, 1) (c, 1)

(a, 2) (b, 2) (c, 2)

(a, 3) (b, 2) (c, 3)

Example 1.22. Given any category D and an object C of a category C , the
constant diagram ∆C :D C is the functor that sends every object to C and
every arrow to the identity of C. Furthermore, every arrow f :C D in C

determines trivially a natural transformation ∆f :∆C ∆D.
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Definition 1.23. Let C be an object of a category C . Let D :D C be
a diagram. A cone (resp. cocone) with base D and vertex C is a natural
transformation η :∆C D (resp. η :D ∆C), where ∆C :D C is the
constant diagram (see Example 1.22).

Example 1.24. Let C be a category andD an object of it. Given a diagram
D :pb C with image A B C, a cone η with base D and vertex
D is given by three arrows ηA :D A, ηB :D B and ηC :D C such
that D B is equal to both compositions D A B and D C B.
Hence, the cone η is determined by the arrows ηA and ηB, which may be
represented by the following diagram of shape sq.

D A

C B

Example 1.25. Given a diagram D :D C , where D is the discrete cat-
egory (a category with no non-identity arrows) over a set, which we also
denote by D, a cone η with base D is just a set of arrows of C with common
domain. In this case, we call η a discrete cone with vertex C, where C is the
vertex of η.

The cone ηmay also be seen as a diagram as follows. Consider a category
D ′ constructed from D by adding formally an initial object, that is

D ′


D • • • • • . . .

•
. . .

So, the cone η is equivalent to the diagram D ′ :D ′ C such that on objects
it acts as D in D and it sends the new initial object to C. On arrows, it sends
a non-identity arrow • D, where D is an object of D, to ηD :C D(D).
Now it is even clearer that η corresponds a set of arrows {C Dd}d∈D.

Dually, a discrete cocone with vertex C is a cone with vertex C under a
diagram with base the discrete category D over a set. Similarly, it may be
seen as a diagram too, but the new category D ′ is now constructed from D
by adding formally a terminal object, that is

D ′


D • • • • • . . .

•
. . .

Definition 1.26. Let D :D C be a diagram. Then, there is a contravariant
functor

Cone(−, D) :C Set

that sends an objectC of C to the set (see Remark 1.18.1) of cones with base
D and vertexC, and an arrow f :C D to the map (∆f)

∗ :Cone(D, D)

Cone(C, D). A limit of D is a representation of Cone(−, D).
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Dually, there is a covariant functor

Cone(D,−):C Set

that sends an object C of C to the set of cocones with base D and vertex C,
and an arrow f :C D to the map (∆f)∗ :Cone(D, D) Cone(C, D). A
colimit of D is a representation of Cone(D,−).

Given a diagram D :D C , observe that, by Proposition 1.15, a limit
(resp. colimit) of D is a terminal (resp. initial) object of

∫
Cone(−, D) (resp.∫

Cone(D,−)).
So, when it exists, by abstract nonsense a limit or a colimit of a diagram

D is uniquely determined up to a unique isomorphism.

Example 1.27. The limit (resp. colimit) of a diagram of shape pb is called
a pullback (resp. pushout) (see [46, §4, Pullbacks, p.71]). All the results that
follow about pullbacks have a co-version for pushouts reversing the arrows,
we omit the details. A category C admits pullbacks if the pullback of every
diagram of shape pb with values in C exists. Given a diagram D :pb C

with image A B C, when its pullback exists, the vertex is denoted
by A×B C and it is called again the pullback of A and C over B, or the
fibre product of the pullback of A by C B. The arrows A×B C A

and A×B C C are called projections, and all the relevant arrows can be
summarised in a diagram of shape sq

A×B C A

C B,

p

which is called a Cartesian square. We usually emphasise a Cartesian square
with a li�le corner inside it as in the previous diagram. Furthermore, a
diagram D :D C is called Cartesian if there is at least one functor F :

sq D injective on objects and, for all of them, the diagrams D ◦ F are
Cartesian squares.

Consider a cone η with base D and vertex D (see Example 1.24). Since
the pullback is the terminal object in the category

∫
Cone(−, D), there is a

unique arrow D A×B C (which we denote by ηA ×B ηC) such that

(∆(ηS×BηC))
∗ :Cone(A×B C, D) Cone(D, D)

maps the pullback A×B C to η.

Definition 1.28. Let C be a category admi�ing pullbacks and f :A B

an arrow in C . Via the identity arrow of A and f, there is a cone over
the diagram A f B f A with vertex A. We denote by ∆A/B the arrow
1A ×B 1A, which is called the diagonal of A over B.

Example 1.29. For every category C and every arrow f :A C of C , the
following diagram is Cartesian.

A C

A C

f

1A
p

1C
f
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Lemma 1.30 (Transtivity of pullbacks, see [46, Exercise 8, p.72]). Let C be a
category admi�ing pullbacks. Let A B be an arrow of C . Let B C D

be a diagram in C of shape pb. Then, the pullback of the diagram A B

B×C D is isomorphic to the pullback of the diagram A C D obtained
by composition. In particular, given the following diagram,

X Y Z

X ′ Y ′ Z ′

if the right hand square is Cartesian, then the le� hand square is Cartesian if
and only if so is the big one obtained by composition.

Proof. Since we may consider the following diagram of shape pb× pb,

A B B

C C C

C C D

1B

1C 1C

1C
1C

1C

and limits commute with limits (see [55, Theorem 3.8.1, p.111]),

(A×C C)×(B×CC) (B×CD) ∼= (A×B B)×(C×CC) (C×CD).

Hence, by Example 1.29, A×B (B×CD) ∼= A×CD.

Lemma 1.31 (Magic diagram, see [61, Exercise 1.3.S, pp.36, 37]). Let C be
a category admi�ing pullbacks. Let A B be an arrow of C . Let C
B D and C A D be diagrams in C of shape pb. The arrow A B

determines an arrowC×AD C×BD, and moreover, the following diagram
is Cartesian.

C×AD C×BD

A A×B A

p

∆A/B

Proof. Since we may consider the following diagram of shape pb× pb,

A A C

A B B

A A D

1A

1A
1B

1A
1A

and limits commute with limits (see [55, Theorem 3.8.1, p.111]),

(A×A A)×(A×BA) (C×BD) ∼= (A×A C)×(A×BB) (A×AD).

Hence, by Example 1.29, A×(A×BA) (C×BD) ∼= C×AD.
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Lemma 1.32. Let C be a category admi�ing pullbacks. Let f :A B be
a monomorphism of C and C g

B an arrow of C . Consider the following
Cartesian square.

A×B C A

C B

q

p
p

f

g

The arrow p is also a monomorphism. Moreover, it is an isomorphism if and
only if there is an arrow C A (obviously unique) whose composition with f
is g.

Proof. Given two arrows a,b :D A×B C such that pa = pb, since f is a
monomorphism, qa = qb. Se�ing p ′ = pa = pb and q ′ = qa = qb, the
arrows p ′ and q ′ define a cone with base A B C and vertexD. Hence,
by the uniqueness of p ′ ×B q ′, both arrows a and b are equal to it.

Now, if p is an isomorphism, the arrow C A is the composition qp−1.
If there is an arrow h :C A with f = gh, then the arrows h and 1C
define a cone with base A B C and vertex C. So, p(h×D 1C) = 1C
by definition, then p(h ×B 1C)p = p and, since p is a monomorphism,
(h×B 1C)p = 1A×BC.

Definition 1.33. Given a categoryC and an objectC ofC , the slice category
over C (a particular case of a comma category), denoted by CC, has for
objects arrows X C of C and for arrows (which are called C-arrows), say
from X C to Y C, arrows X Y of C such that the composition
X Y C agrees with X C.

Given a category C and an arrow g :C D of C , pullbacks give a functor
P g, the base change, on the slice category CD with values in the slice cat-
egory CC. It sends X D to the projection X×D C C, which is denoted
by XC C or simply XC. And a D-arrow f :X Y is sent to fT :XT YT ,
called the base change of f by C D, defined by the following Cartesian
diagram, recall Lemma 1.30.

XC YC C

X Y D

fC

p p

f

1.1 .3 Grothendieck topologies

This section aims to introduce the theory behind Corollary 1.45.1, a funda-
mental stone in all the forthcoming constructions. We refer to [47] and [60,
Tag 022A] for a deeper treatment of the subject.

Definition 1.34. Fix a categoryC admi�ing pullbacks. A Grothendieck topo-
logy is a category C together with a collection Cov(C) of discrete cocones
(see Example 1.25) with values in C (see Example 1.25), which are called
coverings, satisfying the following conditions.

http://stacks.math.columbia.edu/tag/022A
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(1) If D C is an isomorphism, then the discrete cocone {D C}

belongs to Cov(C).

(2) For every covering {Di C}i inCov(C) and every arrow E C ofC ,
the set of projections {Di ×C E E}i, which form a discrete cocone,
belongs to Cov(C).

(3) For every covering {Di C}i in Cov(C) and every collection on i of
coverings {Ei,j Di}j in Cov(C), the discrete cocone {Ei,j C}i,j,
obtained by composition, belongs to Cov(C).

Example 1.35 (The small classic topology). Let X be a topological space
and let Open(X) denote the category of open subsets of X, where arrows
U V stand for inclusionsU ⊆ V . Then,Open(X) with the set of discrete
cocones {Ui U}i such that U ⊆ ∪iUi form a Grothendieck topology.

In this case, given two arrows V U andW U, the pullback V ×UW
is the intersection V ∩W.

Example 1.36 (The global classic topology). The category of topological
spaces with the collection of discrete cocones {fi :Ui X}i such that each
fi is an open embedding and X ⊆ ∪ifi(Ui) form a Grothendieck topology.

Notice that we must consider open embeddings in general, not just in-
clusions of open subspaces; otherwise condition (1) of Definition 1.34 is not
satisfied.

Example 1.37 (The small Zariski topology). It is the small classic topology
over the underlying topological space of a scheme.

Example 1.38 (The global Zariski topology). Let S be a ground scheme.
Then, SchS with the collection of families of S-morphisms {fi :Ui X}i
such that each fi is an open embedding and X ⊆ ∪ifi(Ui) form a Grothen-
dieck topology.

Given a covering {fi :Ui X}, the set {fi(Ui)}i is an open cover of X in
the classic sense.

Definition 1.39. Let S be a ground scheme and X an S-scheme. An fpqc
covering of X (see [18, Definition 2.34, p.28] and [60, Tag 022B]) is a cocone
of S-morphisms {ϕi :Ui X}i∈I such that

1. every ϕi is a flat morphism and X ⊆ ∪i∈Iϕi(Si); and

2. for every a�ine open subscheme U of X, there is a finite set K, a map
κ :K I, and a�ine open subschemes Vκ(k) of Sκ(k) for k ∈ K such
that U = ∪k∈Kϕκ(k)(Vκ(k)).

The fpqc topology over the category SchS is the Grothendieck topology
overSchS where the collectionCov(SchS) of coverings is given by the fpqc
coverings of any S-scheme (see [18, pp.27, 28])

We call a morphism X S an fpqc morphism if the set {X S} is an
fpqc covering of S.

http://stacks.math.columbia.edu/tag/022B
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Remark 1.39.1. A morphism f :X S is an fpqc morphism if and only if
it is flat and, for every a�ine open subscheme U of S, there is a finite set of
a�ine open subschemes Vi of X such that U = ∪if(Ui). In particular, f is
faithfully flat, that is flat and surjective.

For Example 1.41 below, we recall the following definition.

Definition 1.40. A morphism X S is quasi-compact if the preimage
of every a�ine open subscheme of S is a quasi-compact open subset of X
(see [20, Proposition and Definition 10.1, p.242] or [60, Tag 01K2]).

Example 1.41. For a quasi-compact morphism f :X S, the preimage of
every a�ine open subscheme U of S (which is quasi-compact) is covered by
a finite set of a�ine open subscheme of X. Hence, if moreover f is faithfully
flat, then f is a fpqc morphism.

In fact, the abbreviation fpqc stands for “fidèlement plat et quasi-compact”,
meaning faithfully flat and quasi-compact in French; which was the class
of morphisms used in Grothendieck’s original definition of the fpqc topo-
logy (which is slightly more restrictive than the nowadays standard Defini-
tion 1.39).

Example 1.42. If S = Spec(k), then every morphism f :X S is flat and
the unique a�ine open subscheme of S, which is S itself, is covered by any
a�ine open subscheme of X. Hence, every morphism f :X S is an fpqc
morphism.

Definition 1.43. Let C be a category admi�ing pullbacks. Let Cov(C) be
a Grothendieck topology over C . A presheaf on C is a contravariant functor
F :C Set and it is a sheaf for the topology Cov(C) if for every covering
{Di C}i in Cov(C) the following diagram is an equaliser.

F C
∐
i

F Di
∐
i,j

F (Di ×CDj)

Which means that for every (si) ∈
∐
i F Di satisfying p∗si = q∗sj for all

i, j, where p :Di ×C Dj Di and q :Di ×C Dj Dj are the projections,
there is a unique s ∈ F C whose pullback by Di C is si for all i.

For a presheaf F :C Set, when there is no confusion, given an arrow
ι :Di C of a covering in Cov(C), the image of an element s ∈ F (C) by
F (ι) is denoted by s|Di .

The same definition applies for a functor with values in any other category
D, besides Set, in this case it is called a sheaf with values in D for the
topology Cov(C).

Example 1.44. Given a functor F :Sch Set, it is a sheaf for the global
Zariski topology (see Example 1.38) if for every scheme T and every open
covering T =

⋃
i∈IUi, and for any collection of elements ξi ∈ F (Ui) such

that ξi|Ui∩Uj = ξj|Ui∩Uj there exists a unique element ξ ∈ F (T) such that
ξi = ξ|Ui in F (Ui).

http://stacks.math.columbia.edu/tag/01K2
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Theorem 1.45 below is a result on descent due to Grothendieck. For a proof,
we refer to [18, Theorem 2.55, p.34] (or [60, Tag 03O3]). Grothendieck’s
original result is [23, B.1, Théorème 2. (190-19)], which only applies to the
original definition of an fpqc cover (see paragraph below Example 1.41).

Theorem 1.45 (Grothendieck). A representable functor on SchS is a sheaf
in the fpqc topology.

Corollary 1.45.1. Let S be a ground scheme. Let π :X T and f :X Y be
S-morphisms and consider the two projections p,q :X×T X X. Assume that
π is an fpqc morphism, then there is a morphism g : T Y (obviously unique)
such that f = g ◦ π if and only if f ◦ p = f ◦ q.

Proof. The following diagram is an equaliser.

hY/S T hY/S X hY/S(X×S X).
p∗

q∗

1.2 the scheme theoretic image

In this section, we review the scheme theoretic version of the image of a
morphism, while we set the notation. But first as a warm up, we discuss a
bit about the subtle di�erence between σ :Z X being a closed embedding
or a closed subscheme. Basically, when Z is a closed subscheme of X there
is a unique natural embedding σ :Z X, but when σ :Z X is a closed
embedding there may be many embeddings of Z into X, none of them more
natural than another.

For a�ine schemes the di�erence is clear: a closed subscheme corresponds
to the natural homomorphism A A/I, where A is a ring and I an ideal of
A, and a closed embedding is just a surjective homomorphism A B for
some rings A,B.

Definition 1.46. Let f :X Y be a morphism of schemes. The scheme
theoretic image of f (or schematic image for short) is a closed subscheme
Im(f) of Y through which f factorises and satisfying the following universal
property: If f factorises through a closed embedding Z Y, then Im(f) Y

also factorises through it. We also call a diagram X Im(f) Y a scheme
theoretic image. Given an open subscheme U of X the schematic closure of
U in X is the schematic image of the open embedding U X.

In addition, given a point x ∈ X, we denote by x the schematic image of
the natural morphism Spec(κ(x)) X.

Remark 1.46.1. It is a standard result (see [20, Definition and Lemma 10.29,
p.251], [22, I, Chapitre I, §9.5, p.176] or [60, Tag 01R5]) that the schematic
image of any morphism f exists, by abstract nonsense it is uniquely determ-
ined up to a unique isomorphism, but since it is a closed subscheme it is in
fact unique.

If f is quasi-compact, then the closed subscheme Im(f) of Y is defined
by the quasi-coherent OY-ideal ker(OY f∗OX) (see [20, Proposition 10.30,
p.251], [22, I, Chapitre I, §9.5, p.176] or [60, Tag 01R5]).

http://stacks.math.columbia.edu/tag/03O3
http://stacks.math.columbia.edu/tag/01R5
http://stacks.math.columbia.edu/tag/01R5
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Remark 1.46.2. Fix a scheme Y and a monomorphism i :Z Y (e.g. a
closed or open embedding). Since being an isomorphism is a local property
on the target, by Lemma 1.32, for a morphism f :X Y, the property of
factorising through i is local on the source.

Lemma 1.47. Let X X Y be a schematic image and i :Z Y a closed
subscheme. Then, the closed embedding ZX X is an isomorphism if and only
if so is ZX X.

Proof. The closed embedding ZX X is the base change of ZX X by
X X, hence if the la�er is an isomorphism then so is the former. On the
other hand, if ZX X is an isomorphism, via its inverse, the morphism
X Y factorises through Z Y. Then, by its universal property, the closed
embedding X Y also factorises throughZ Y and the claim follows from
Lemma 1.32.

Lemma 1.48 below is another standard result about schematic images
(see [20, Lemma 14.6, p.424], [60, Tag 081I] or [22, IV2, Chapitre IV, Proposi-
tion 2.3.2, p.14]).

Lemma 1.48. Let S be a ground scheme and S ′ S a flat morphism. Let f :
X Y be a quasi-compact morphism of S-schemes and X its schematic image.
The schematic image of the base change f ′ :X ′ Y ′ of f by S ′ S is the fibre
product X×S S ′.

Proposition 1.49. Letπ :X Y be a separated morphism. Then, every section
σ : Y X of π is a closed embedding.

Proof. Consider the schemes X and Y as X-schemes via 1X and σ respect-
ively, and as Y-schemes via π and π ◦ σ = 1Y . Then, by Lemma 1.31, the
following diagram is Cartesian.

Y X

X X×Y X

σ

σ
p

1X×Y(σ◦π)
∆X/Y

Since π :X Y is separated, ∆X/Y is a closed embedding and then σ is a
closed embedding as well.

1.3 scheme theoretic constant morphisms

This sections paraphrases the common set-theoretic notion of a constant
map for morphisms of schemes.

Definition 1.50. Let S be a ground scheme. Let p :X Y and f :X W

be S-morphisms. Consider the following Cartesian diagram

Z W

X×Y X W ×SW

p
∆W/S

f×Yf

http://stacks.math.columbia.edu/tag/081I
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where ∆W/S is the diagonal. We say that the morphism f is constant along
the fibres of p if the monomorphism Z X×Y X is an isomorphism.

The standard (and maybe more intuitive) definition of a morphism f :

X W being constant along the fibres of another morphism p :X Y is
that the following diagram commutes.

X×Y X X

X W

q1

q2 f

f

That is, the kernel, or equaliser, of the two morphisms f ◦ q1, f ◦ q2 is the
whole schemeX×Y X, which, by Lemma 1.32, is equivalent to Definition 1.50
(see [27, Définition 1.4.2, p.34 and Proposition 1.4.10, p.37]).

When the underlying topological space of Y is just a point, we recover the
set-theoretic notion of a constant map over the closed points of X. Indeed,
for every pair of closed points x, x ′ of X, there is a point η of X×Y X such
that q1(η) = x and q2(η) = x ′, hence, if f is constant along the fibres of p,

f(x) = f ◦ q1(η) = f ◦ q2(η) = f(x ′).

Remark 1.50.1. From the second definition, it follows straightforwardly
that, given an S-morphism f ′ :W W ′, if f is constant along the fibres of
p, then so is f ′ ◦ f. If furthermore f ′ is a monomorphism, then the converse
also holds.

Remark 1.50.2. Given a morphism g :X ′ X, since the following diagram
is Cartesian,

Z ′ Z W

X ′ ×W X ′ X×W X W ×SW

p p
∆W/S

g×Wg f×Wf

if f is constant along the fibres of p, then f ◦ g is constant along the fibres
of p ◦ g.

Proposition 1.51. Let S be a ground scheme. Let p :X Y and f :X W be
S-morphisms. If p is an fpqc morphism (see Definition 1.39), then f is constant
along the fibres of p if and only if there is an S-morphism g : Y W such that
f = g ◦ p. In this case, the morphism g is unique.

Proof. The condition that f is constant along the fibres of p is just ste�ing
that f belongs to the kernel of the two maps

q∗1 ,q∗2 : hW/S(X) hW/S(X×Y X),

where q1,q2 :X×Y X X are the projections. Hence, the claim follows
immediately form Corollary 1.45.1.
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1.3 .1 Naively constant morphisms

A constant map f :X Y is commonly known as a map for which it exits a
unique y ∈ Y such that f(x) = y for every x ∈ X. In this section, we explore
the scheme-theoretic consequences of this set-theoretic definition.

Definition 1.52. We say that a morphism f :X Y is naively constant
through a point y0 of Y when f(x) = y0 for all points x of X.

Theorem 1.53. Let f :X Y be a morphism with X quasi-compact. The
morphism f is naively constant through a point y0 of Y if and only if it factors
through a morphism Z Y where the underlying topological space of Z is a
point and the underlying reduced subscheme Zred of the schematic closure Z of
Z Y is equal to y0. Moreover, if y0 is a closed point of Y, then the morphism
Z Y is a closed embedding.

Before proving Theorem 1.53, we characterise schemes whose underlying
topological space is a point and we illustrate the two fundamental steps of
our proof with two examples.

Proposition 1.54. Given a scheme Z, its underlying topological space is a
point if and only if Z is a�ine and the nilradical of its ring of functions R is a
maximal ideal. In particular, the ring R is local.

Proof. Consider a ring R for which Nil(R) is a maximal ideal. Since

Nil(R) =
⋂

p∈Spec(R)

p

and it is a maximal ideal of R, it is the unique prime ideal of R.
Conversely, if there is a unique z ∈ Z, then {z} = Z is the only open

neighbourhood of z, so it has to be a�ine, that is Z ∼= Spec(R) for some ring
R. Now, the prime ideal q of R corresponding to z is the unique prime ideal
of R, so q is the nilradical of R and it is maximal.

To illustrate the first step in the proof of Theorem 1.53 consider for every
natural numbern then-th fat point schemeXn, that is the spectrum ofRn =

k[ε]/(εn). The natural homomorphism ϕn :k[x] Rn gives a morphism
Xn A1

k, which is naively constant and it factorises through Xn itself,
notice that k[x]/ ker(ϕn) ∼= Rn and that ϕ−1

n ((ε)) =
√

ker(ϕn). When we
consider the scheme X defined as the finite disjoint union

X =
∐
n∈N

Xn,

for some finite set of natural numbers N, we may decompose the natural
morphism X A1

k into the a�ine morphisms ϕn for all n ∈ N, each one
again factorising through k[x]/ ker(ϕn) ∼= Rn. But X A1

k just factorises
through

k[x]/
( ⋂
n∈N

ker(ϕn)
)
= Rmax(N).
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The other required step is illustrated by the natural morphism from the
generic point η of an irreducible plane curve to A2

k. This morphism is na-
ively constant and it factorises through η itself. But now, the corresponding
homomorphism is ϕ :k[x,y] κ(η) and k[x,y]/ ker(ϕ) 6∼= κ(η). In this
case ϕ factorises through

(k[x,y]/ ker(ϕ))ϕ−1(η).

Proof of Theorem 1.53. Consider the a�ine case, that is f :X Y corres-
ponds to a homomorphismϕ :A B such that there is a unique prime ideal
q of A (the one corresponding to the point y0 of Y) for which ϕ−1(p) = q

for every prime ideal p ⊆ B. Set

R = (A/ ker(ϕ))q.

Let us check that ϕ :A B factorises naturally through R, that is (by the
universal property of localisations) if a ∈ A \ q, then the image ϕ(a) ∈ B
is invertible. We show the contrapositive, so consider a ∈ A for which
ϕ(a) ∈ B is non-invertible, then ϕ(a) belongs to some prime ideal p of B
and a ∈ ϕ−1(p) = q.

Now, we show that R satisfies the condition of Proposition 1.54 and then
its spectrum is a point. Since radicals commute with preimages,√

ker(ϕ) = ϕ−1(Nil(B)).

Now, the ideal Nil(B) of B is the intersection of all the primes ideal of B
hence, since intersections commute with preimages,√

ker(ϕ) =
⋂
p∈X

ϕ−1(p) = q.

In particular, q is the unique prime ideal of Aq containing ker(ϕ) and then
R is a local ring whose nilradical is the maximal ideal.

For the general case, fix an a�ine open cover {Ui}i∈I of X with Ui ∼=

Spec(Bi) for some rings Bi. Since X is assumed quasi-compact, we assume
the set I finite. Fix an a�ine open neighbourhood V of y0 ∈ Y, say V ∼=

Spec(A) for a ring A, and denote by q the prime ideal of A corresponding
to y0.

By assumption, the set f(X) is {y0} which is a subset of V , so f factorises
through the open embedding V Y and so do all the restrictions f|Ui .
Denote by ϕi :A Bi the homomorphism corresponding to f|Ui :Ui V

and by ai its kernel. Now the desired scheme is the spectrum of

R =
( A

∩iai

)
q
.

For every i ∈ I, by the a�ine case there is a morphism (A/ai)q Bi
which extends to a morphism ϕi :R Bi through the natural morphism
R (A/ai)q given by the inclusion ∩jaj ai. For every i ∈ I, also by the
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a�ine case,
√
ai = q. So, since radicals commute with finite products and I

is finite,√⋂
i∈I

ai =
⋂
i∈I

√
ai = q.

Hence, the spectrum of R is a point by Proposition 1.54.
Let us see that f :X Y factorises through Spec(R) Y (here Spec(R)

Y is the composition Spec(R) Spec(A) Y). We just need to check that
the morphisms αi :R Bi define a morphism X Z, that is they agree
on overlaps. Fix two elements Ui and Uj of the cover {Ui}i with non-empty
overlap. LetU be an a�ine open subscheme ofUi ∩Uj, sayU ∼= Spec(C) for
some ring C, and consider the homomorphisms ci :Bi C and cj :Bj C

corresponding respectively to the open embeddings U Ui and U Uj.
So, by construction, the following diagram commutes.

A Bi

Bj C

ϕi

ϕj ci

cj

Now, it is straightforward to see that the following diagram also commutes.

A/(∩iai) Bi

Bj C

and, since the localisation A/(∩iai) R is an epimorphism, ci ◦ αi =

cj ◦αj.
To show that the subschemes Zred and y0 of Y are equal we just need to

show that√
ker(A R) = q.

In fact, ker(A R) = ∩iai because A/∩i ai R is injective, let us check
it. Observe that for every i ∈ I the following diagram commutes.

A/ai

(A/ai)q Bi

So, A/ai (A/ai)q is injective for every i. For every i ∈ I, the following
diagram also commutes.

A/∩i ai A/ai

R (A/ai)q

Then, ker(A/∩i ai R) ⊆ ∩i ker(A/∩j aj A/ai) = 0.

Finally, if y0 is a closed point, following with the same notation, the ideal
q of A is maximal and every ideal ai is q-primary. So, the nilradical of the
ring A/(∩iai) is a maximal ideal.
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1.4 hilbert schemes

In sum, Grothendieck’s method
of representable functors is like
Descartes’ method of coordinate
axes: simple, yet powerful. Here
is one hallmark of genius!

–Steven L. Kleiman
The Picard scheme

Hilbert schemes are the parameter space for flat families of closed sub-
schemes of quasiprojective schemes. The basic theory was developed by
Grothendieck in [25]. Later, Altman and Kleiman, in [2], carried out in de-
tail Grothendieck’s exposition, which leads them to similar existence results
with slightly di�erent assumptions. For an alternative exposition, aiming to
be more accessible, see [18, Chapter 5, pp.107–158]. For a clear exposition
in the case of surfaces, see [48]. For another approach to Hilbert schemes
replacing finiteness assumptions by ones more combinatorial and aiming
for explicit equations see [29], which covers other approaches which also
aim for explicit equations as [35] and [21].

The existence of our principal constructions, the blow up split section
family and the universal scheme of ordered clusters of sections, relies on the
existence of Hilbert schemes. In fact, we merely realise these constructions
as locally closed subschemes of suitable Hilbert schemes.

In this section, we quickly review the basic definitions and existence res-
ults for Hilbert schemes.

Definition 1.55. We call a morphism X S projective (resp. quasipro-
jective) if it is finitely presented and there is a locally free OS-module E of
constant finite rank together with a closed embedding (resp. a locally closed
embedding) X P(E) over S.1

Definition 1.56. Let S be a ground scheme. Let X be a quasiprojective S-
scheme. The Hilbert functor of X is the functor on SchS with values in Set,
denoted by HilbX/S, which sends an S-scheme T to the set

HilbX/S(T) = {Z closed subscheme XT with Z T is proper and flat}.

Let k be a field, letX be a projective scheme over k, and letF be a coherent
sheaf on X whose support is proper over k. For each n > 0, define

ξ(F(n)) =

∞∑
i=0

(−1)i dimk Hi(X,F(n)).

1 There are distinct notions of a (quasi)projective morphism (see the discussions in [2, p.52]
and [18, §5.5.1, pp.126, 127]). For example, Definition 1.55 is equal to [2, Definition 2.1, p.63],
where they call such schemes strongly (quasi)projective. We introduce this class of morphisms
as finiteness conditions required for the existence of the Hilbert scheme, but all our existence
results remain true assuming that the required Hilbert schemes exist.
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Then, there is a polynomial Φ ∈ Q[z], called the Hilbert polynomial of F,
such that Φ(n) = ξ(F(n)) for all n > 0. Given a closed subscheme Z of
X, the Hilbert polynomial of Z is the Hilbert polynomial of the sheaf of OX-
ideals defining Z. The Hilbert polynomial is a numerical invariant, which
encodes a lot of information of the sheaf F. For example, its degree is equal
to the dimension of the support of F. It enjoys many useful properties, but
here we just review, with no proofs, the ones we are interested in. For a
detailed treatment we refer to [22, III1, Chapitre III, §2.5, pp.109–111 and
III2, Chapitre III, §7.9, pp.76–80] and [25, §2, pp.253–258].

Proposition 1.57. Let k be a field, let X be a projective scheme over k, and
let F be a coherent sheaf on X whose support is proper over k. Let k ⊆ K be
a base field extension. Then, the Hilbert polynomial of the extended sheaf FK
on XK is equal to the Hilbert polynomial of F on X.

Proposition 1.58. Let S be a ground scheme. Let f :X Y be a flat and
projective S-morphism. Then, the Hilbert polynomial of the fibres of f is locally
constant on the points of Y.

Theorem 1.59 below is proved by Altman and Kleiman in [2, Theorem
2.6, p.66], where, by means of stronger notions of projectivity, they remove
the Noetherian assumptions from the original result given by Grothendieck
in [25, §3, pp.258–266 (Théorème 3.1, p.259)], see discussion in [2, p.52]. For
an alternative exposition under Noetherian assumptions see [18, Chapter 5,
pp.107–158].

Theorem 1.59 (Grothendieck). Let S be a ground scheme. Let X be a pro-
jective (resp. quasiprojective) S-scheme. Then, the functor HilbX/S is repres-
entable and the representing S-scheme HilbX/S is at most a countable disjoint
union of projective (resp. quasiprojective) S-schemes. Furthermore, if S is
locally Noetherian, then so is HilbX/S.

Such a decomposition of the scheme HilbX/S is obtained as follows. For

every polynomial Φ ∈ Q[z], consider the subfunctor HilbΦX/S of HilbX/S,
which sends an S-scheme T to the set

{Z ∈ HilbX/S(T) : the Hilbert polynomial of the fibres of Z T isΦ}.

By Proposition 1.58, the functor HilbX/S is representable if and only if all

the functors HilbΦX/S are representable, and, when they are representable,
the S-scheme representing HilbX/S is isomorphic to the disjoint union of

the schemes representing HilbΦX/S.1

1.5 sections in family

We review the universal section family, a scheme parametrising all sections
of a given morphism. We also state its main existence results as an open
subscheme of a suitable Hilbert scheme.

1 Notice that, in general, given two S-schemes X and Y, the functors h(XtY)/S and
hX/S t hY/S are not isomorphic.
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Definition 1.60. LetS be a ground scheme. Letπ :X Y be an S-morphism.
Let T be an S-scheme. A T -family of sections over π is a section σ : YT XT
of the base change πT :XT YT of π by T S, that is an element of
SchYT (YT ,XT ).

Let X be an S-scheme and ψ an X-family of sections over π. The couple
(X,ψ) is a universal section family of π (or Usf for short) if it satisfies the
following universal property: For every S-scheme T and every T -family of
sections σ over π, there is a unique S-morphism f : T X such that the
following diagram is Cartesian,

YT XT YT

YX XX YX

σ

fY
p

πT

fX
p

fY

ψ πX

(1.5.1)

or equivalently, such that fX ◦ σ = ψ ◦ fY .

For explicit examples of universal section family see Examples 5.40 and 5.42.

Remark 1.60.1. The collection of families of sections overπ form a category
Sπ, where objects are pairs (T ,σ) with T a S-scheme and σ a T -family of
sections over π. An arrow, from (T ,σ) to (T ′,σ ′), is a morphism f : T T ′

such that fX ◦ σ = fY ◦ σ ′, or equivalently, such that σ is the base change
of σ ′ by f.

If a Usf of an S-morphism π :X Y exists, by abstract nonsense, it is
uniquely determined up to a unique isomorphism

Let S be a ground scheme. Given an S-morphism π :X Y, consider the
contravariant functor Sectπ :SchS Set corresponding to the parameter
space problem of sections of π, defined as follows. For every S-scheme T ,
set

SectπT = {sections of πT :XT YT } = SchYT (YT ,XT ),

and for every S-morphism f : T ′ T , the map Sectπf : SectπT SectπT ′
sends a T -family of sections σ : YT XT over π to its base change σT ′ :
YT ′ XT ′ by f, which is a T ′-family of sections over π (see [24, II, C, n.2,
pp.380, 381, le foncteur “ensemble des sections”]).

Proposition 1.61. Let S be a ground scheme. Let π :X Y be an S-scheme.
Let X be an S-scheme andψ a X-family of sections over π, that isψ ∈ SectπX.
The couple (X,ψ) represents the functor Sectπ if and only if it is the Usf of π.

Proof. By construction, Sπ is the category of elements of Sectπ, then the
claim follows by Proposition 1.15.

Let S be a ground scheme, π :X Y an S-morphism and T an S-scheme.
Given a T -family of sections σ : YT XT overπ, notice that for every S-point
s :S T of T , the base change σs : Y X ofσ by s, that is σs = Sectπ(s)(σ),
can be identified with a section of π.
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Corollary 1.61.1. Let S be a ground scheme. Let π :X Y be an S-scheme.
If the Usf (X,ψ) of π exists, then the map hX(S) SchY(Y,X) sending an
S-point s :S X of X to the section of π corresponding to ψs determines a
one-to-one correspondence.

Proposition 1.62. Let S be a locally Noetherian ground scheme. Letπ :X Y

be an S-scheme with X quasiprojective over S and Y proper and flat over S.
Then, the functor Sectπ is representable in the category of locally Noetherian
schemes and it is represented by an open subscheme of HilbX/S. In particular,
the representing scheme is at most a countable disjoint union of quasiprojective
schemes.

In Section 3.1.2, a�er introducing the functor Iso, we show how repres-
entability of Iso can be used to prove Proposition 1.62, see proof a�er Re-
mark 3.16.2.

Remark 1.62.1. A natural question now is when Sectπ HilbX/S is also
representable by closed embeddings, that is, when the scheme representing
Sectπ is projective.

By definition, it is needed that, for every locally Noetherian S-scheme
T and every element Z ∈ HilbX/ST , the open subscheme UZ of T to be
also a closed subscheme. By [60, Tag 05PF], that would be the case if the
morphism of OYT -modules OYT (iT ◦πT )∗OZ is surjective, but this almost
never happens.

For example, if π is a�ine, then (πT )∗ is exact, in particular right exact
and (πT )∗OX (iT ◦ πT )∗OZ is surjective, but we expect π to be surjective
and OYT (πT )∗OX injective.

A trivial case is when π is an isomorphism, then the scheme representing
Sectπ is a point corresponding to its inverse (its unique section), or also
corresponding to the connected component of the Hilbert scheme HilbX/S
parametrising the whole scheme X as a subscheme of itself.

Proposition 1.62 can be easily extended to the case when the ambient
scheme X is at most a countable disjoint union of quasiprojective schemes.

Proposition 1.63. Let S be a locally Noetherian ground scheme. Letπ :X Y

be an S-scheme with X at most a countable disjoint union of quasiprojective
schemes over S and Y proper and flat over S. Then, the functor Sectπ is rep-
resentable and the representing scheme is locally Noetherian and at most a
countable disjoint union of quasiprojective schemes.

Proof. Fix a decomposition
⊔
i∈I Xi of X into a finite or countable disjoint

union of quasiprojective schemes. For every i ∈ I, by Proposition 1.62,
the Usf (Xi,ψi) of Xi Y exists and Xi is at most a countable disjoint
union of quasiprojective schemes. So, X =

⊔
i∈IXi is at most a countable

disjoint union of quasiprojective schemes and, se�ing ψ as the composition
of
⊔
i∈Iψi with the natural isomorphism YX

⊔
i∈I YXi (see [20, Exercise

4.2, p.115]), the couple (X,ψ) is the Usf of π.

http://stacks.math.columbia.edu/tag/05PF
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1.5 .1 Elementary constructions

In this section, we explore how the universal section family behaves under
some elementary transformations, as base changes or pullbacks. It is mostly
a warm up for Section 5.3.

Proposition 1.64. Let S be a ground scheme. Letπ :X Y be an S-morphism.
Let T S be a morphism. Assume that the universal section family (X,ψ) of
π exists. Then the universal section family of the T -morphism πT :XT YT is
(XT ,ψT ).

Proof. Given a T -scheme T ′ T , clearly the image of the T -scheme T ′ T

by the functor

SectπT :SchT Set

and the image of the S-scheme T ′ T S by the functor

Sectπ :SchS Set

agree. Finally, by the universal property of pullbacks there is an isomorphism

SchS(T
′,X) ∼= SchT (T

′,XT ),

natural on T ′. Hence, the scheme XT represents the functor SectπT .

Proposition 1.65. Let S be a ground scheme. Letπ :X Y andπ ′ :X ′ Y be
S-morphisms. Assume that the universal section families (X,ψ) and (X ′,ψ ′)
of π and π ′ exist. Then, the universal section family of the S-morphism π :

X×Y X ′ Y is (X×S X ′,ψ×S ψ ′).

Proof. Given an S-scheme T S, composition with the projections X×Y
X ′ X and X×S X ′ X ′ give a map

Sectπ(T) Sectπ(T)× Sectπ ′(T)

natural on T . Moreover, given to sections σ : YT XT and σ ′ : YT X ′T ,
since πT ◦ σ = 1YT = π ′T ◦ σ ′, they determine a unique section σ× σ ′ :
YT X×Y X ′. That is, the previous map is bijective.

Finally, by Yoneda’s lemma (see Lemma 1.7) there is an isomorphism

SchS(T ,X)×SchS(T ,X ′) ∼= SchS(T ,X×s X ′)

natural on T .

Proposition 1.66. Let S be a ground scheme. Let π :X Y and π ′ :X ′

Y ′ be S-morphisms. Assume that the universal section families (X,ψ) and
(X ′,ψ ′) of π and π ′ exist. Then, the universal section family of π̃ :X×s X ′
Y ×s Y ′ is (XY ′ ×S X ′Y ,ψY ′ ×S ψ ′Y).
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Proof. By the following Cartesian diagram, it is an immediate consequence
of Propositions 1.64 and 1.65.

X×s X ′ X ′Y X ′

XY ′ Y ×S Y ′ Y ′

X Y S

p
π ′Y

p
π ′

πY ′

p p

π

Lemma 1.67. Let S be a ground scheme. Let X Y be a S-morphism and T
an S-scheme. Consider the following Cartesian diagram.

XT YT T

X Y S
π

Then, there is a bijective map from SchY(YT ,X) to SchYT (YT ,XT ) natural on
T .

Proof. Let σ ∈ SchYT (YT ,XT ) and f ∈ SchY(YT ,X). Consider the follow-
ing diagram.

XT YT T

X Y S

σ

f

π

The composition of σ with the projection XT X belongs to SchY(YT ,X).
Since, f ∈ SchY(YT ,X), the product of f with the 1YT is well defined and it
is an element ofSchYT (YT ,XT ). Clearly, these two constructions are natural
on T S and mutually inverse.

Proposition 1.68. Let S be a ground scheme. Let g : Y S be a morphism.
Let F :SchY Set be a representable functor represented by a pair (X,η),
whereX is a Y-scheme and η a natural isomorphism between F and hX. Denote
by π :X Y the structure morphism, which is an S-morphism. Then, there is
a natural isomorphism

F ◦ P g
∼= Sectπ,

where P g is the base change functor (see Definition 1.33).

Proof. Given an S-scheme T ,

F ◦ P g(T) = F (TY).

The natural isomorphism η determines an isomorphism

F (TY) SchY(TY ,X)
ηTY

natural on T . Now, by Lemma 1.67, there is a bijective map natural on T

SchY(TY ,X) SchTY (TY ,XT ) = Sectπ(T).
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1.5 .2 Weil restrictions

Let Y S be a morphism. Then, for every Y-scheme X π Y, the Weil
restriction of X with respect to Y S is the contravariant functor, denoted
by RY/S(X) :SchS Set, sending an S-scheme T S to the set

RY/S(X)(T) = SchY(YT ,X).

This section shows Weil restrictions are equivalent to universal section fam-
ilies.

Theorem 1.69. Let Y S be a morphism. Let X π Y be a Y-scheme. The
functors Sectπ and RY/S(X) are isomorphic.

Proof. It is an immediate consequence of Lemma 1.67.

Theorem 1.70 below can be found in [4, Theorem 4, p.194].

Theorem 1.70. Let S be a ground scheme and π :X Y an S-morphism. If
Y S is finite locally free and, for every point s of S, every finite set P of points
on the fibre Xs of X S is contained in an a�ine open subscheme of X, then
Sect Y/S(X) is representable by a locally Noetherian quasiprojective S-scheme.

Lemma 1.71 below is well-known (e.g., [45, Proposition 3.36 (b), p.109]).

Lemma 1.71. Let X be quasiprojective scheme over a ring A. Then, every
finite set P of points on X is contained in some a�ine open subscheme of X.

1.6 flattening stratification

The fla�ening stratification of a morphism X S is a stratification tiSi
of S by locally closed subschemes (obviously unique) such that a morphism
T S factorises through it if and only if XT T is flat.

One of its main uses is in the construction of the Hilbert scheme (see Sec-
tion 1.4). Indeed, fixing a polynomial Φ ∈ Q[z], via the Castelnuovo-
Mumford regularity, the functor HilbΦX/S can be seen as a subfunctor of
a suitable Grasmannian and the existence of the fla�ening stratification is
asserting that such a subfunctor is representable by locally closed embed-
dings (see [18, §5.5.4–6, pp.128, 129]). A posteriori, it is seen that the scheme
representing HilbΦX/S satisfies the valuative criterion for properness, hence
it is projective (see [18, §5.5.7, p.130]).

Definition 1.72. Let S be a ground scheme. Let X S be an S-scheme.
Consider the full subcategory FX/S of SchS whose objects are S-schemes
T S such that XT T is flat. Since the base change of a flat morphism is
flat, the categories FX/S and SchS satisfy condition  (see Remark 1.15.1).
So, we may consider the fla�ening functor for X S, denoted by [[X/S :

SchS Set, defined as the contravariant characteristic functor of FX/S in
SchS, that is given (T S) an object of SchS,

[[X/S(T S) =

{∗} if XT T is flat,

∅ otherwise.



38 assorted preliminaries

When X is (quasi)projective over S, given a polynomialΦ ∈ Q[t], we may
consider the subfunctor [[ΦX/S of the functor [[X/S, which sends (T S) ∈
SchS to

[[ΦX/S(T S) =

{∗} if XT T is flat with Hilbert poly. Φ on the fibres,

∅ otherwise.

Similarly to the Hilbert functor, by Propositions 1.57 and 1.58, [[X/S is rep-
resentable if and only if all the functors [[ΦX/S are representable, and, when
they are representable, the S-scheme representing [[X/S is isomorphic to the
disjoint union of the schemes representing [[ΦX/S.

Theorem 1.73 below is stated as in [2, Lemma (fla�ening) 2.3, p.64], which
is a generalisation (via the standard techniques of [22, IV3, Chapitre IV, §8,
pp.5–54]) to the not necessarily Noetherian case of [25, Lemma 3.4, p.262],
which in turn is the scheme theoretic version of [28, Exposé IV, Corollaire
6.11, p.104]. See [48, Lecture 8, p.55] for a detailed discussion but for Noeth-
erian schemes.

Theorem 1.73. Let S be a ground scheme. Let X be an S-scheme of finite
presentation, locally projective over S. Let Φ ∈ Q[t] be a polynomial. Then,
the functor [[ΦX/S is representable and the representing scheme is a locally closed
subscheme SΦ of S. That is, a morphism T S factors through SΦ S if and
only if XT T is flat with Hilbert polynomial Φ on the fibres.

Remark 1.73.1. When it exists, the underlying set of SΦ is

{s ∈ S : the Hilbert polynomial of Xs is Φ}.

Indeed, by definition, given a point s of SΦ, the Hilbert polynomial of the
schemeXs isΦ. On the other hand, given a point s of S such that the Hilbert
polynomial of Xs is Φ, since Xs {s} is flat, by the universal property of
SΦ, the morphism {s} S factorises through SΦ S.

Definition 1.74. Let S be a scheme. Consider a collection of closed subs-
cheme Zi of S indexed by a partially ordered set I such that, set theoretically,

S =
⋃
i∈I
Zi

and for all i, j ∈ I

Zi ∩Zj =
⋃
k6i,j

Zk.

Moreover, assume that for every point s of S there is an open neighbourhood
of smeeting only a finite number of schemes Zi. Set Si = Zi \

(
∪k6iZk

)
. A

such collection of locally closed subscheme Si is said to be a scheme theoretic
stratification (or simply a stratification) of S. It determines a monomorphism⊔

i∈I
Si S

which is called the monomorphism associated to the stratification.
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Definition 1.75. Let X S be a morphism. The fla�ening stratification of
X S (which it is obviously unique, when it exists) is a stratification of S
whose associated monomorphism represents the functor [[X/S.

Theorem 1.76. Let S be a Noetherian ground scheme. Let X be an S-scheme
projective over S. Then, the fla�ening stratification of X S exists. Moreover,
it can be indexed by the Hilbert polynomial Φ ∈ Q[t] of the fibres of each
strata with the partial order given by Φ < Φ ′ when Φ(t) < Φ ′(t) for all
t� 0. So, each stratum SΦ is the locally closed subscheme of S representing
[[ΦX/S.

Remark 1.76.1. By [60, Tag 01JJ], Theorem 1.76 extends straightforwardly
to the case S locally Noetherian.1

Remark 1.76.2. By [60, Tag 05UH (4)], Theorem 1.76 extends to S any
scheme and X S proper and flat (but in this case the strata are not neces-
sarily indexed by the Hilbert polynomials of the fibres).

1 This remark completes the proof of [18, §5.5.6, p.129].

http://stacks.math.columbia.edu/tag/01JJ
http://stacks.math.columbia.edu/tag/05UH




2
TECHN ICAL I T I E S ON BLOW UPS

“At that time, blowups were the poor man’s tool to
resolve singularities.” This phrase of the late 21st century
mathematician J.H.Φ. Leicht could become correct. In
our days, however, blowups are still the main device for
resolution purposes.

–Herwig Hauser
Seven short stories on blowups and resolutions

Let X be a scheme. We recall that a locally principal subscheme of X is
a closed subscheme whose sheaf of ideals is locally generated by a single
element, whereas an e�ective Cartier divisor of X is a closed subscheme
whose sheaf of ideals is locally generated by a single regular element (see [32,
Remark 6.17.1, p.145], [20, Definition 11.24, p.301], [60, Tag 01WQ] or [22,
IV4, Chapitre IV, Définition 21.1.6, p.257 and Paragraphe 21.2.12, p.262]).
Given a e�ective Cartier divisor Z of X, we also call the closed embedding
Z X an e�ective Cartier divisor.

Let Z be a closed subscheme of X. The blow up of X along Z, denoted
by b : bl(Z,X) X, is a morphism such that b−1(Z) is en e�ective Cartier
divisor of bl(Z,X) and satisfying the following universal property: Given a
morphism f : T X, if f−1(Z) is an e�ective Cartier divisor of T , then it
factorises through b.

The scheme Z is called the centre of the blow up. Its preimage b−1(Z) is
called the exceptional divisor of the blow up and it is usually denoted by E.

Let I be the quasi-coherent OX-ideal cu�ing out Z in X. The scheme
bl(Z,X) is

Proj
X
(Rees(I)),

where Rees(I) = ⊕n>0In is the Rees algebra of I (where I0 = OX). The
morphism bl(Z,X) X is given by the natural morphism of OX-algebras

OX Rees(I).

So, it is clear that the exceptional divisor E is cut out by the invertible sheaf
O(1) of bl(Z,X), that is

E = Proj
X
(
⊕
n>0

In/In+1).

For more details see any introductory book on Algebraic Geometry (e.g., [32,
pp.28–31, pp.163–171], [20, pp.408–418] or [15, Chapter IV.2, pp.162–192]).

41

http://stacks.math.columbia.edu/tag/01WQ
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The residual scheme of Z in X is a construction close to the blow up. It is
defined as the scheme

R(Z,X) = Proj
X
(Sym(I)),

where Sym(I) = ⊕n>0 Symn(I) is the symmetric algebra of I. The natural
morphism of OX-algebras

OX Sym(I)

gives a morphism p : R(Z,X) X, which is an isomorphism o� Z; in fact,
it is an isomorphism over every point of X at which I is invertible. The
preimage of Z by p is cut out by the invertible sheaf O(1) of R(Z,X), that is

p−1(Z) = Proj
X
(Sym(I/I2)).

There is a natural surjective morphism of graded OX-algebras

Sym(I) Rees(I),

which gives a natural closed embedding

bl(Z,X) R(Z,X).

The sheaf O(1) of R(Z,X) restricts to that of bl(Z,X).

In this chapter we state two facts on blow ups that we will need. The
first, to our knowledge is original. It states that under suitable assumptions,
the blow up of a product of schemes along a locally principal subscheme
preserves the product form. The second is not, it is a reformulation of when
blow up commutes with arbitrary base changes.

2.1 when the centre is locally principal

Let S be a ground scheme and X S an S-scheme. We show that blowing
up a locally Noetherian scheme X along a locally principal subscheme Z
consists of shaving o� those associated points of X lying on Z, Theorem 2.4.
Given a flatS-scheme Y Swith geometrically integral fibres, we show that
there is a one-to-one correspondence, preserving specialisations, between
the associated points of X and those of X×S Y, Lemma 2.6. This all yields
that the blow up ofX×S Y along any locally principal subscheme is again the
Cartesian product over S of Y with a closed subscheme ofX, see Theorem 2.8.
In particular, blowing up X×S Y along a locally principal subscheme pre-
serves the product form.

We use that the product form is preserved under such kind of blow ups
in the construction of the blow up split section family (see Chapter 4). In-
deed, such a construction consists in transforming a closed subscheme of a
product of schemes into an e�ective Cartier divisor, similarly to blow ups but
preserving the product form of the ambient scheme. So, a�er applying some
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constructions, we end up with a locally principal subscheme of a product
of schemes X×S Y, where we have absolute control over the scheme Y but
none for X (it is a locally closed subscheme of a suitable Hilbert scheme).
Hence, in Theorem 2.8 we summarise all the required conditions on Y S

in order to apply it as the final step of the proof of Theorem 4.3.

Let f,g :X Y be two morphisms andU an open subscheme of X. When
U is (topologically) dense in X, the equation f|U = g|V implies f|Xred = g|Xred

but not generally f = g.

Example 2.1. Consider X a�ine given by the ring k[x,y]/(xy,y2). The
scheme X consists of a line with an embedded double point at the origin
p. Clearly, we may project X to a line (without the embedded point) and
embed this line into X again. The composition of these two morphisms gives
a morphism f :X X which agrees with 1X on the (topologically dense)
open subscheme X \ {p}, but f 6= 1X.

This phenomenon motivates the following definition.

Definition 2.2. Let X be a scheme. An open subscheme U of X is scheme
theoretically dense in X (or schematically dense for short) if, for every open
subscheme V ofX, the schematic closure ofU∩V in V is equal to V (see [60,
Tag 01RB] or [22, IV3, Chapitre IV, Définition 11.10.2, p.171]).

Remark 2.2.1. In general, there are schemes X with open subschemes U
which are not schematically dense althoughU = X (see [60, Tag 01RC]). But,
when the ambient scheme X is locally Noetherian, every open embedding
is quasi-compact (see [60, Tag 01OX] or [22, I, Chapitre I, Proposition 6.6.4,
p.153]) and then an open subscheme U X is schematically dense if and
only ifU = X (see [60, Tag 01RD] or [22, IV3, Chapitre IV, Remarque 11.10.3
(iv), p.171]).

Remark 2.2.2. When X is locally Noetherian, the schematic union of the
schematic closures of all its associated points is equal to X. Hence, in
this case, an open subscheme U of X is schematically dense if and only
if Ass(X) ⊆ U

Proposition 2.3. Let X be a scheme and Z a closed subscheme of X. Let
i :U X be the open subscheme complement of Z in X and b :U X its
schematic closure. If Z is a locally principal subscheme of X, then the closed
embedding b :U X is the blow up of X along Z.

We are going to prove that if Z is an e�ective Cartier divisor of X, then
U = X (with no assumptions on X). For the locally Noetherian case, see [22,
IV2, Chapitre IV, Corollaire 3.1.9, p.38].

Proof. A�ine locally on X, we may assume Z defined by a principal ideal,
say (f) ⊆ A for some ring A and f ∈ A. The open embedding U X is an
a�ine morphism because a�ine locally it is given by Spec(Af) Spec(A).
Therefore U X is quasi-compact the sheaf K = ker(OX i∗OU) is

http://stacks.math.columbia.edu/tag/01RB
http://stacks.math.columbia.edu/tag/01RC
http://stacks.math.columbia.edu/tag/01OX
http://stacks.math.columbia.edu/tag/01RD
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quasi-coherent and, by Remark 1.46.1, it defines the closed embedding b :
U X.

Since the blow up, by its universal property, can be computed locally on
X, we may assume X ∼= Spec(A) and Z defined by (f) ⊆ A. Then, the open
subscheme U of X is D(f) ∼= Spec(Af), the OY-ideal K corresponds to the
ideal a = ker(A Af) ⊆ A and the closed embedding b is given by the
natural homomorphism A A/a.

When f ∈ A is nilpotent, the subscheme U of X is the empty scheme.
Moreover, for all n � 0, the n-th graded components of the Rees algebra
of the ideal (f) of A are zero. Hence, the blow up of X along Z is also the
empty scheme.

Assume f ∈ A non-nilpotent. The ideal a ⊆ A is ∪n∈N(0 : fn) (see [3,
Proposition 3.11.ii, p.41]). So, the closed subscheme b−1(Z) of U is an ef-
fective Cartier divisor because it is defined by the class of f in A/a which is
a non-zerodivisor. Let g :W X be a morphism with g−1(Z) an e�ective
Cartier divisor ofW. A�ine locally g is given by homomorphismsϕ :A B

with ϕ(f) ∈ B a non-zerodivisor. Hence, a ⊆ ker(ϕ) and g factors through
b.

We have seen that blowing up along a locally principal subscheme is equi-
valent to taking the schematic closure of the open complement of such a
locally principal subscheme. But, when the ambient scheme is locally No-
etherian, there are no pathological associated points, see [60, Tag 02OI], and
then, as Theorem 2.4 below shows, we can give a more explicit description of
the parts that are shaved o� on the blowing up procedure, which will be use-
ful later. Namely, those associated points of the ambient scheme belonging
to the centre of the blow up.

As a preparation for Theorem 2.4 below, we make the following observa-
tions. Let x be an associated point of an a�ine scheme X, say X ∼= Spec(A)
for some ring A, with x corresponding to a prime ideal p ⊆ A (that is, p
is an associated prime of A, or equivalently, the maximal ideal of the stalk
OX,x is an associated prime ideal).

Given an open subschemeU X, since for any y ∈ U the stalks OX,y and
(OX|U)y are isomorphic, the sets Ass(X)∩U and Ass(U) are equal (see [22,
IV2, Chapitre IV, Proposition 3.1.13, p.39]).

In contrast, given a closed subschemeZ X, sayZ ∼= Spec(A/I) for some
ideal I ⊆ A, the point x belongs to Z if and only if

√
I ⊆ p. But now, the

sets Ass(X)∩Z and Ass(Z) are unrelated in general. For example, the case
A = k[x,y]/(xy,y2) and I = (y) ⊆ A shows that Ass(X) ∩ Z 6⊆ Ass(Z)
is possible. Indeed, the scheme Z is A1

k with just one associated point, its
generic point, but the point p ∈ X corresponding to the prime ideal (x,y) ⊆
A belongs to Z and it is an associated point of X. Considering the same
scheme X, but now as a closed subscheme of A2

k via the natural projection
k[x,y] A, the same point p ∈ X shows that Ass(X) 6⊆ Ass(A2

k) ∩ X is
also possible.

http://stacks.math.columbia.edu/tag/02OI
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Theorem 2.4. Let X be a locally Noetherian scheme and Z a locally principal
subscheme of X. Let TZ be the subset of X union of the underlying sets of x for
all x ∈ Ass(X) ∩ Z. Let V be the complement of TZ in X. Then V is an open
subscheme of X and its schematic closure V X is the blow up of X along Z.

Proof. First of all, the subset TZ of X is closed because its intersection with
every Noetherian a�ine open subscheme of X is a union of finitely many
closed subsets (see [60, Tag 05AF] or [22, IV2, Chapitre IV, Proposition 3.1.6,
p.37]). Hence V is an open subscheme of X.

LetU be the open complement of Z andU its schematic closure. Since TZ
is a closed subset of Z,U is an open subscheme of V and of V . We show that
U V is schematically dense, then the claim follows from Proposition 2.3.

By definition of TZ, Ass(X)∩U = Ass(X)∩ V and, by [22, IV2, Chapitre
IV, Proposition 3.1.13, p.39], Ass(V) ⊆ Ass(X) ∩ V . So, Ass(V) ⊆ U and
then U is a schematically dense subscheme of V by Remark 2.2.2.

Definition 2.5. Let k be a base field. A k-scheme X is called geometrically
integral if, for every field extension k K, the scheme XK is integral. A
morphism X Y is called with geometrically integral fibres if, for every
point y of Y, the fibre Xy {y} is geometrically integral.

Remark 2.5.1. By [45, Chapter 3, Remark 2.9, p.90] and [62, Chapter III,
Corollary 1 of Theorem 40, p.198], an integral scheme over an algebraically
closed field is geometrically integral.

Lemma 2.6. Let S be a locally Noetherian ground scheme. Let X f S and
Y

g
S be locally Noetherian S-schemes. Let η ∈ Ass(X), set s = f(η) ∈ S

and consider the following Cartesian diagram.

(Ys)η {η}

Ys {s}

p

Assume that g is faithfully flat and with geometrically integral fibres. Then, the
scheme (Ys)η is integral and its generic point is mapped to an associated point
ξη ofX×S Y by the natural monomorphism (Ys)η X×S Y. Furthermore, the
correspondence associating η ∈ Ass(X) with ξη ∈ Ass(X×S Y) is one-to-one
and preserves specialisations.

Proof. The scheme Ys is integral because we assume g with geometrically
integral fibres. Denote its generic point by µη and denote by Iη the image of

Ass(Spec(κ(η)⊗κ(s) κ(µη)))

by the natural monomorphism Spec(κ(η)⊗κ(s) κ(µη)) X×S Y. By [22,
IV2, Chapitre IV, Proposition 3.3.6, pp.44, 45],

Ass(X×S Y) =
⋃

η∈Ass(X)

Iη.

http://stacks.math.columbia.edu/tag/05AF
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So now, we will show that there is a unique point in Ass(Spec(κ(η)⊗κ(s)
κ(µη))), and then its image to X×S Y will be the desired point ξη. Consider
the following Cartesian diagram.

Spec(κ(η)⊗κ(s) κ(µη)) (Ys)η {η}

{µη} Ys {s}

p p

By [22, IV2, Chapitre IV, Corollaire 3.3.7, p.45], there is a bijective map
between Ass(Spec(κ(η)⊗κ(s) κ(µη))) and Ass((Ys)η), which has a unique
point since we assume g with geometrically integral fibres.

Now, we check that the correspondence

η ∈ Ass(X) ξη ∈ Ass(X×S Y)

preserves specialisations. Fix η,η ′ ∈ Ass(X), set s = f(η) and s ′ = f(η ′)

and denote respectively by µ and µ ′ the generic points of the fibres Ys and
Ys ′ . Assume that η is a specialisation of η ′, that is η ∈ η ′, or equivalently,
a�ine locally the prime ideal corresponding to η ′ is contained in the prime
ideal corresponding to η (see [20, Example 2.9, p.44]). So, it is clear that s is
a specialisation of s ′. Hence, we may consider the following diagram.

{ξη} {η}×s {µ} η ′ ×s ′ Ys ′ X×S Y

{η ′}×s ′ {µ ′}

{ξη ′}

The schematic image of {ξη ′} X×S Y is the schematic image of η ′ ×s ′
Ys ′ X×S Y restricted to the schematic image of {ξη ′} η ′ ×s ′ Ys ′ (see
transitivity of schematic images, [22, I, Chapitre I, Proposition 9.5.5, p.177]).
Hence, if the schematic image of {ξη ′} η ′ ×s ′ Ys ′ is the whole ambient
scheme, then the point {ξη} is a specialisation of {ξη ′}. It is not hard to see
that the following diagram is Cartesian.

{η ′}×s ′ Ys ′ η ′ ×S Ys ′ Ys ′ Y

{η ′} η ′ s ′ S

So, since {η} η ′ η ′ is a schematic image and Y S is flat, by
Lemma 1.48, the schematic image of {η ′}×s ′ Ys ′ η ′ ×S Ys ′ is the whole
ambient scheme.

Lemma 2.7. Let S be a ground scheme. Let Y S an fpqc morphism. Let
X be an S-scheme and i :W X a closed embedding. Let h ′ : T X be an
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S-morphism. Letϕ : T ×S Y W ×S Y be a morphism such that the following
diagram commutes.

T ×S Y W ×S Y

X×S Y

ϕ

h ′Y
iY

Then, there is a unique morphism h : T W such that ϕ = hY .

Proof. Denote by pT : T ×S Y T , pX :X×S Y X and pW :W ×S Y W

the projections. Since the following diagram commutes,

T ×S Y X×S Y X

T

pT

iY◦ϕ pX

h ′

the morphism pX ◦ iY ◦ϕ is constant along the fibres of pT . Then, since
pX ◦ iY = i ◦pW and i is a monomorphism, by Remark 1.50.1, the morphism
pW ◦ϕ is constant along the fibres of pT . By Proposition 1.51, there is a
unique morphism h : T W such that h ◦ pT = pW ◦ ϕ. Consider the
following diagram.

TY WY Y

T W S

ϕ

pT pW
p

h

Since it commutes and both the right hand and the big squares are Cartesian,
so is the le� hand. Hence, ϕ = hY .

Theorem 2.8. Let S be a locally Noetherian ground scheme. Let X f S and
Y

g
S be locally Noetherian S-schemes. LetZ be a locally principal subscheme

of X×S Y. Assume that Y g
S is flat and with geometrically integral fibres.

Then, there is a closed subscheme i :W X such that the closed embedding
iY :W ×S Y X×S Y is the blow up of X×S Y along Z.

If furthermore Y S is an fpqc morphism, for every S-morphism T h ′ X

for which the preimage of Z by h ′Y : T ×S Y X×S Y is an e�ective Cartier
divisor, there is a unique morphism h : T W such that i ◦ h ′ = h. Moreover,
hY : T ×S Y W ×S Y is the morphism given by the universal property of the
blow up iY .

Proof. LetΩ denote the set of points ξ ∈ Ass(X×S Y) such that ξ ∈ Z. By
Theorem 2.4, the blow up of X×S Y along Z is the schematic closure of the
open subscheme U X×S Y complement of the closed subset

TZ =
⋃
ξ∈Ω

ξ.

Let p :X×S Y X be the projection and denote by V the open subscheme
of X complement of the closed subset⋃

ξ∈Ω
p(ξ).
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We claim that the schematic closure of the open embedding V X is
the desired closed subscheme W of X. Let us check it. Observe that g is
quasi-compact because S is locally Noetherian (see [60, Tag 01OX]). Now,
since g is assumed flat, by Lemma 1.48, the schematic closure of the open
embedding V ×S Y X×S Y is V ×S Y. An associated point η of U is a
point η ∈ Ass(X×S Y) such that η 6∈ ξ for all ξ ∈ Ω. Since the one-to-one
correspondence between Ass(X) and Ass(X×S Y) respects specialisations,
this is equivalent to p(η) 6∈ p(ξ) for all ξ ∈ Ω, which is equivalent to η ∈
p−1(V) = V ×S Y. Hence, Ass(U) = Ass(V ×S Y). Since ξ ∈ p−1(p(ξ)),
the scheme V ×S Y is an open subscheme of U and then the schematic
closures of U and V ×S Y in X ×S Y are equal (see [22, IV2, Chapitre IV,
Proposition 3.1.13, p.39 and IV3, Chapitre IV, Proposition 11.10.10, p.172]
or [60, Tag 083P]).

Assume thatY S is an fpqc morphism and consider such an S-morphism
h ′ : T X. By the universal property of the blow up iY , there is a unique
morphism ϕ : T ×S Y W ×S Y such that iY ◦ϕ = h ′Y . Now, the claim
follows from Lemma 2.7.

Remark 2.8.1. If the assumption Y S with geometrically integral fibres
fails, then there is a point s of S and a field extension κ(s) K such that
(Ys)K is not integral. Se�ing X = Spec(K), the scheme X×S Y is (Ys)K and
it has at least one locally principal subscheme Z, which is not an e�ective
Cartier divisor. Hence, the blow up of X×S Y along Z is not an isomorphism
and, if it is not the empty scheme (otherwise Theorem 2.8 is trivial), there
is no closed subschemeW of X such thatW ×S Y X×S Y is such a blow
up.

2.2 changing the base

This section studies when blow ups commute with arbitrary base changes.
This question relies mostly on when the Rees algebra of a sheaf of ideals
commutes with taking inverse images. Consider the following situation.

Situation 2.9. Let S be a ground scheme and f : T S a morphism. Let X
be an S-scheme of finite presentation, Z a closed subscheme of X flat over
S and I the corresponding quasi-coherent OX-ideal.

The inverse image of I by fX :XT X is the OXT -ideal defining the closed
subscheme ZT of XT (see Lemma 2.11). Moreover, from the assumption

\. for every n� 0, the inverse image of In by fX is an OXT -ideal,

follows straightforwardly that the blow up of X along Z commutes with
the base change T S, with no additional assumptions on T S (see
Theorem 2.12).

By Lemma 2.11, it may seem that in Situation 2.9 the assumption \ is
already satisfied, in fact this is stated as an exercise in [61, Exercise 24.2.O,
p.652], but there are counterexamples (see Remark 2.12.2).

http://stacks.math.columbia.edu/tag/01OX
http://stacks.math.columbia.edu/tag/083P
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Actually, failure of condition \ prevents many constructions from being
functorial without assuming some conditions on the involved schemes or
morphisms. In order to overcome this di�iculty, we follow the idea in [38,
Proposition 2.4, p.31] or [41, Proposition 3.4, p.422], which is to restrict
to a case when the Rees algebra of I agrees with its symmetric algebra.
Then, since the symmetric algebra does commute with taking inverse images,
so does the Rees algebra. Nevertheless, our approach, Proposition 2.14, is
slightly di�erent from [38, Proposition 2.4, p.31]. We restrict explicitly to
the case when the Rees and the symmetric algebras agree, which is called a
weakly linear embedding.

Lemma 2.10. Let f :X Y be a morphism. Let I be an OY-ideal and n a
positive integer. If, for i = 1,n, the OX-module f∗(Ii) is an OX-ideal, then
f∗(In) = (f∗I)n.

Proof. For i = 1,n, from the inclusion Ii OY , there is a natural morphism
of OX-modules

f∗(Ii) = f−1Ii ⊗f−1OY OX OX.

Clearly (and this is completely general), the ideal generated by the image
of f∗(In) OX is the n-th power of the ideal generated by the image of
f∗I OX. But by assumption f∗(Ii) OX are injective for i = 1,n, hence
f∗(In) = (f∗I)n.

Lemma 2.11. In Situation 2.9, the inverse image of I by fX :XT X is a
quasi-coherent OXT -ideal and moreover, it corresponds to the closed embedding
ZT XT .

Proof. Consider the fundamental exact sequence of OX-modules for the
closed embedding i :Z X.

0 I OX i∗OZ 0

By assumption, i∗OZ is flat over S. Hence, by [20, Proposition 7.39 (1), p.194],
the following sequence of OXT -modules is exact.

0 (fX)
∗I (fX)

∗OX (fX)
∗i∗OZ 0

Now, (fX)∗OX = OXT (see [20, Remark 7.10, p.180]) and then (fX)
∗I is an

OXT -ideal. Moreover, (fX)∗i∗OZ = (iT )∗OZT and then (fX)
∗I is the OXT -

ideal cu�ing out ZT XT .

Theorem 2.12. In Situation 2.9, assuming \, the formation of the blow up
bl(Z,X) of X along Z commutes with base change T S

bl(ZT ,XT ) = bl(Z,X)×S T .

Proof. Denote by IT the OXT -ideal defining the closed subscheme ZT of XT .
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By definition, the blow up of X along Z is the relative projective spectrum
of the OX-algebra ⊕nIn. By functoriality, there is a natural isomorphism

Proj
(
(fX)

∗
(⊕
n>0

In
))

∼= Proj
(⊕
n>0

In
)
×X XT

(see [22, II, Chapitre II, Proposition 3.5.3, p.62]). The functor (fX)∗ is le�
adjoint to (fX)∗, hence it commutes with colimits (see [20, Proposition 7.11,
p.181] and [55, Theorem 4.5.3, p.138]), so

(fX)
∗
(⊕
n>0

In
)
=
⊕
n>0

(fX)
∗In.

By Lemmas 2.10 and 2.11, for all n � 0, (fX)∗(In) = ((fX)
∗I)n = (IT )

n.
Finally, relative projective spectra do not depend on low degrees (see [20,
§13.7, p.378] and [32, Chapter II, Exercise 2.14 (c), p.81]).

Remark 2.12.1. In the proof of Lemma 2.11, we have showed that assump-
tion \ would be satisfied if the OX-modules OX/I

n are flat over S for all
n� 0. This is another approach unexplored to our knowledge.

Remark 2.12.2. Let π1 and π2 be two distinct planes in A3
k meeting along

a line S. Let X be the union of π1 and π2 in A3
k, so S is the singular locus

of X. Consider a line Z contained in π1 and intersecting S in exactly one
point p. Consider a projection X S onto S, whose restriction to Z is still
surjective. This example is in Situation 2.9 and, even more, X S is also
flat. But the blow up of X along Z does not commute with the base change
{p} S.

The pathology in this example is that the stalk of the normal sheaf of Z
in X at p has rank two. Moreover, even though p is a singular point of X, it
is smooth on each irreducible component π1, π2 of X and the normal sheaf
at p of Z ∩ π2 in π1 has still rank two. But, whereas the normal sheaf of
the fibre Zp = {p} in Xp has again rank two, the normal sheaf of Zp in both
irreducible components of Xp has just rank one.

Let us see how this a�ects on blowing up. The blow up of Xp along Zp is
the disjoint union of two lines, the blow up morphism is the projection onto
Xp, hence its fibre at p is the disjoint union of two points.

In contrast, the blow up of X along Z is an isomorphism away from p, but
its fibre at p is a whole projective line P1k corresponding to the projectivisa-
tion of the normal bundle of Z at p.

Giving coordinates, it is straightforward to see that in fact the inverse
image of the second power of the ideal defining Z in X is not an ideal of the
corresponding ring.

Definition 2.13. Let σ : Y X be a closed embedding and I the quasi-
coherent OX-ideal cu�ing out its schematic image. If the natural morphism
of OX-modules

Symn(I) In
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is an isomorphism for all n� 0, then σ is called a weakly linear embedding.
If furthermore it is an isomorphism for all n > 0, then σ is called a linear
embedding, see [37].

Proposition 2.14. Let S be a ground scheme. Let X be an S-scheme and σ :
Z X a closed embedding. Then, the formation of the blow up Xσ of X along
the image of σ commutes with base change T S,

(XT )σT = Xσ ×S T

if σ :Z X, σT :ZT XT are weakly linear and Z S is flat.

Proof. Denote by I the quasi-coherent OX-ideal cu�ing out the schematic
image of σ. By Lemma 2.11, the quasi-coherent OXT -ideal IT corresponding
to σT :ZT XT is the inverse image of I by fX. It is well-known that sym-
metric powers commute with taking inverse images (see [20, §11.1, pp.287,
288]), that is, since σ and σT are assumed weakly linear, for all n� 0,

(fX)
∗(In) = (fX)

∗
(

Symn
OX

I
)
= Symn

OXT

(
(fX)

∗I
)
= Symn

OXT
IT = (IT )

n.

And the claim follows from Theorem 2.12.

Remark 2.14.1. We have seen that when σ :Z X is weakly linear, then
the blow up ofX alongZ is the relative projective spectrum of the symmetric
algebra of I. If Z S is flat, from the fundamental exact sequence of the
closed embedding Z X follows that I is flat over S if and only if so is X.
Hence, since the symmetric power functor preserve flat modules (see [42,
Proposition 2.3, p.101]), if σ :Z X is weakly linear and both X, Z are flat
over S, then the blow up Xσ of X along the image of σ is again flat over Z.





3
BU I LD ING BLOCKS

All in all it’s just another brick in the wall
All in all you’re just another brick in the wall

–Roger Waters
Another Brick in the Wall (Part 2)

In this chapter, we introduce two handy constructions, which will be ex-
tensively used. As far as we know, all results of this sections are new, except
for Section 3.1.2, where we review two well-known cases for the represent-
ability of the functor Iso, Theorems 3.15 and 3.16.

Let S be a ground scheme. Let p :X Y and f :X W be S-morphisms.
Set-theoretically, the morphism f is constant along the fibres of the mor-
phism p if, for all point y of Y, the restriction of f to Xy, the morphism
f|Xy :Xy W, is constant. Although f is not constant along the fibres of
p, we may consider the (possibly empty) set Y ′ of points y of Y for which
the morphism f|Xy is constant. The first construction is the f-constantify (or
f-constfy for short) closed subscheme of Y, which is the scheme-theoretic
construction of Y ′.

Let π :X Y and α :X T be morphisms. The second construction is
the universal split section family. It parametrises sections of π :X Y, but
just those sections whose image is contained in some fibre of α :X T . We
consider α :X T as a morphism spli�ing the ambient space X by means
of its fibres. So, the universal split section family is the scheme solving the
parameter space problem of sections of π split by α.

3.1 constfying morphisms

Let S be a ground scheme. Let p :X Y and f :X W be S-morphisms.
The goal of this section is to study S-morphisms T Y for which the com-
position XT X f W is constant along the fibres of the projection XT T .
Theorem 3.21, an immediate consequence of Theorem 3.17, shows that they
form a category with a final object, which is a closed subscheme of Y. We call
it the f-constantify (or f-constfy for short) closed subscheme of Y (see Defin-
ition 3.20).

We introduce the functor Iso (see Definition 3.14) mainly to study this
category, but it will also have some other applications, in the study of the
geometry of the blow up split section family (see Theorem 4.8) or the uni-
versal (split) section families (see Theorems 3.19 and 5.30).

The representability of the functor Iso has been studied in the literature,
but explicit constructions for the representing scheme are lacking. To this
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end (see Theorem 3.17), we introduce the class of ℵ1-projective morphisms,
Definition 3.9, and its main property, Theorem 3.13. Namely, that arbit-
rary schematic unions of closed subschemes commute with ℵ1-projective
pullbacks.

3.1 .1 Base change of schematic unions

In this section, we introduce ℵ1-projective morphisms to show that arbit-
rary schematic unions of closed subschemes commute with ℵ1-projective
pullbacks.

Definition 3.1. Let R be a ring. An R-module M is Mi�ag-Le�ler if the
natural homomorphism

ρ :M⊗R
∏
i∈I
Qi

∏
i∈I
M⊗RQi

is injective for every family of R-modules (Qi | i ∈ I).

Example 3.2. For example, finitely presented modules are Mi�ag-Le�ler. A
finitely generated module is Mi�ag-Le�ler if and only if it is finitely presen-
ted. Projective modules are also Mi�ag-Le�ler, in particular, so are free
modules.

On the other side, a typical example of a non-Mi�ag-Le�ler module is Q

as a Z-module. Indeed, consider the family of Z-modulesQn = Z/nZ. So,∏
n Q⊗ZQn = 0. But, Q is a subring of Q⊗Z

∏
nQn. Since Q is flat as a

Z-module, applying Q⊗Z _ to the injective homomorphism Z
∏
nQn,

we get Q Q⊗Z

∏
nQn.

For more examples see [60, Tag 059Q].

We are interested in Mi�ag-Le�ler modules which moreover are flat. In [33],
there is a complete characterisation of such modules as ℵ1-projective mod-
ules, which motivates Definition 3.7 below (see [33, Corollary 2.7, p.3443 and
Corollary 2.10, p.3444]). We review the main definitions and results for the
convenience of the reader.

Definition 3.3. Let R be a ring, and M a R-module. Let κ be a regular
uncountable cardinal. A direct system C of submodules ofM is said to be a
κ-dense system inM if

(1) C is closed under unions of well-ordered ascending chains of length
smaller than κ, and

(2) every subset of M of cardinality smaller than κ is contained in an
element of C.

Theorem3.4 (see [33, Corollary 2.7, p.3443]). LetR be a ring andM a module.
Then, M is Mi�ag-Le�ler if and only if there is an ℵ1-dense system in M
consisting of countably generated pure projective modules.

http://stacks.math.columbia.edu/tag/059Q
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Definition 3.5. Let R be a ring, and let κ be a regular uncountable cardinal.
An R-module M is said to be κ-projective if there is a κ-dense system C

consisting of projective modules generated by less than κ elements.

Theorem 3.6 (see [33, Corollary 2.10, p.3444]). Let R be a ring. An R-module
M is flat and Mi�ag-Le�ler if and only if it is ℵ1-projective.

Definition 3.7. We say that an homomorphism ϕ :A B is ℵ1-projective
if B is an ℵ1-projective A-module via ϕ.

Lemma 3.8. Let A B be an ℵ1-projective homomorphism. Then, for every
family of ideals {aλ}λ∈Λ of A,

B ·
⋂
λ∈Λ

aλ =
⋂
λ∈Λ

B · aλ.

Proof. Since B is a flat A-module, the following sequence is exact.

0 B⊗A
⋂
λ∈Λ aλ B⊗A A B⊗A

∏
λ∈Λ

A/aλ
α

So, B · ∩λaλ = ker(α). Now, since B is a Mi�ag-Le�ler A-module, the
natural homomorphism

ρ :B⊗A
∏
λ∈Λ

A/aλ
∏
λ∈Λ

B⊗A A/aλ

is injective. Hence, ker(α) = ker(ρ ◦α) = ∩λB · aλ.

Definition 3.9. Let f :X Y be morphism. An a�ine cover of f is a couple
(U,V) where U = {Ui}i is an a�ine open cover of Y and V = {Vi,j}i,j is a
collection of a�ine open covers {Vi,j}j of f−1(Ui) for ever i. An ℵ1-projective
cover of f is an a�ine cover (U,V) of f such that for every i, j the homomorph-
ism corresponding to Vi,j Ui is ℵ1-projective. We say that f :X Y is
ℵ1-projective, if it admits an ℵ1-projective covering.

Remark 3.9.1. The existence of an ℵ1-projective cover of f does not imply
that every a�ine cover of f isℵ1-projective. The existence of anℵ1-projective
cover can be computed locally on the target, since the union ofℵ1-projective
covers is again an ℵ1-projective cover. The property of beingℵ1-projective is
stable under pullbacks by a�ine morphisms. But in general, since preimages
do not preserve a�ineness, it is not clear whether ℵ1-projectivity of mor-
phisms is preserved under arbitrary pullback or base changes (even though
flat and Mi�ag-Le�ler modules ascend along arbitrary ring maps).

Example 3.10. Let k be a field. Let X, Y be k-schemes. Then, the projection
X ×k Y X is ℵ1-projective. Fix a�ine covers U = {Ui}, {Vj} of X, Y
respectively. Then, the set V = {Ui×Vj} is an a�ine cover of X× Y and the
couple (U,V) is an ℵ1-projective covering of X× Y X. Let us check it.

For every i, j, the projection Ui × Vj Ui corresponds to the natural
homomorphism A A⊗k B for some k-algebras A, B. So, A⊗k B is a
free A-module and free modules are flat (well-known) and Mi�ag-Le�ler
(see [60, Tag 059Q]).

http://stacks.math.columbia.edu/tag/059Q
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Example 3.11. In fact, in Example 3.10 we have seen that every morphism
f :Z S which, a�ine locally can be given by homomorphisms A B with
B a free A-module, is ℵ1-projective. In particular, if f is an a�ine morphism
such that the OS-module f∗OZ is locally free.

Notation 3.12. Let X be a scheme. Consider a family of closed subschemes
Yl of X cut o� by a family of quasi-coherent OX-ideals {Il}l. We denote by
ΣlYl its schematic union, that is, the closed subscheme of X corresponding
to the quasi-coherent OX-ideal

⋂
l Il.

Theorem 3.13 below is the main property for which we introduce ℵ1-
projective morphisms. It asserts that arbitrary schematic unions of closed
subscheme commute with ℵ1-projective pullbacks.

Theorem 3.13. Let X Y be an ℵ1-projective morphism. Then, for every
family {Yl}l of closed subschemes of Y, the closed subschemes XΣlYl and ΣlXYl
of X are equal.

Proof. Fix an ℵ1-projective covering ({Ui}, {Vi,j}) of X Y. We check that
for every i, j the closed subschemes (XΣlYl)∩ Vi,j and (ΣlXYl)∩ Vi,j of Vi,j
are equal.

Fix i, j and denote respectively by A and B the rings of functions of Ui
and Vi,j. Every closed subscheme Yl ∩Ui of Ui is given by an ideal al of A.
The closed subschemes (XΣlYl)∩ Vi,j and (ΣlXYl)∩ Vi,j of Vi,j are given re-
spectively by the ideals ∩lB · al and B · ∩lal. But since B is an ℵ1-projective
A-module by assumption, by Lemma 3.8, such ideals are equal.

3.1 .2 The Iso functor

Let S be a ground scheme. Let X Y be an S-morphism. In this section,
we study morphisms T S for which the base change XT YT is an
isomorphism. We review that sending T to the set of such morphisms defines
a functor, Definition 3.14, and the main cases where the representability of
such a functor has been studied, Theorems 3.15 and 3.16.

We use the introduced class ofℵ1-projective morphisms to give an explicit
description of the representing scheme, Theorem 3.17. To finish, we show
(via Hilbert schemes) that whenX is flat over S, the functor Iso is isomorphic
to the functor [Φ for a suitable polynomial Φ.

Definition 3.14. Let p :X Y and Z X be morphisms. Consider the full
subcategory of SchY consisting of Y-schemes T Y such that ZT XT
is an isomorphism. Since isomorphisms are stable by base change, such
categories satisfy condition  (see Remark 1.15.1) and we define IsoZp :
SchY Set as their contravariant characteristic functor. That is, it sends
an Y-scheme T Y to

IsoZp(T) =

{∗} if ZT XT is an isomorphism,

∅ otherwise.
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Let us illustrate the definition of the IsoZp functor in the easiest case in
which it is representable by an a�ine algebraic scheme. Fix a base field k, con-
sider the ringsA = k[A1, . . . ,An] and R = A⊗k k[x1, . . . , xm], and assume
X = Spec(R), Y = Spec(A) and p :X Y given by the natural homomorph-
ism A R. A closed subscheme Z of X is given by polynomial equations
{pi = 0}i withpi ∈ R. So, when we wonder for which (A1, . . . ,An) ∈ kn the
equations {pi = 0} are satisfied for all (x1, . . . , xm) ∈ km, we write down the
polynomials pi as elements of A[x1, . . . , xm]. That is, pi =

∑
j a
i
jx
j, where

j = (j1, . . . , jm), aij ∈ A and xj = xj11 · · · x
jm
m . Then, for the (A1, . . . ,An) ∈

kn satisfying {aij = 0}i,j the polynomials pi are identically zero and the
equations {pi = 0}i are satisfied for all (x1, . . . , xm) ∈ km.

A bit more formally, consider the closed subschemeW of Y given by the
equations {aij = 0}i,j. We are just saying that the base change of the closed
embedding Z X byW Y is an isomorphism and thatW is the “biggest”
closed subscheme of Y with this property. In this case,W represents IsoZf .

Remark 3.14.1. Notice that a closed embedding has a section if and only if
it is an isomorphism. Hence, if Z X is a closed embedding, then IsoZp =

SectZ X = RX/Y(Z) (see Sections 1.5 and 1.5.2).

Remark 3.14.2. If the functor IsoZp is representable by an open or closed
subscheme Y ′ of Y, the underlying set of Y ′ is

ω = {y ∈ Y such that Zy Xy is an isomorphism}.

Indeed, if a point y of Y belongs to Y ′, then Zy Xy is the base change
of (the isomorphism) ZY ′ XY ′ by y Y ′, hence y ∈ ω. If y ∈ ω, then,
by the universal property of the closed embedding Y ′ Y, the morphism
{y} Y factorises through Y ′ Y. Hence, y belongs to Y ′.

There are two main di�erent cases when the representability of the functor
IsoZp has been studied. We state them for the convenience of the reader.

The following can be found in [60, Tag 07AI].

Theorem 3.15. Let p :X Y be a morphism and Z X a closed embedding.
If p is of finite presentation, flat, and pure, then IsoZp is representable and the
representing scheme Y ′ is a closed subscheme of Y. Moreover, if Z Y is of
finite presentation, then so is Y ′ Y.

Theorem 3.16 below, by Proposition 1.15, is equivalent to [18, Theorem
5.22 (b), p.132].

Theorem 3.16. Let p :X Y and Z X be morphisms. If Y is Noetherian,
Z X is projective and Z, X are proper and flat over Y, then IsoZp is repres-
entable in the category of locally Noetherian Y-schemes and the representing
scheme Y ′ is an open subscheme of Y.

Remark 3.16.1. By [60, Tag 01JJ], Theorem 3.16 extends straightforwardly
to the case Y locally Noetherian.1

1 This remark completes the proof of [18, Theorem 5.23, p.133].

http://stacks.math.columbia.edu/tag/07AI
http://stacks.math.columbia.edu/tag/01JJ
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Remark 3.16.2. Notice that a proper morphism onto a locally Noetherian
scheme is of finite presentation (trivially) and pure (see [60, Tag 05K3]).
Hence, ifY locally Noetherian and furthermoreZ X is a closed embedding,
by Theorem 3.15, the scheme Y ′ representing IsoZp is a union of connected
components of Y.

The representability of the functor Sectπ claimed in Proposition 1.62 can
now be easily established as a corollary:

Proof of Proposition 1.62. We show that Sectπ is a subfunctor of HilbX/S
representable by open embeddings, then the claim follows by Theorem 1.59
and Lemma 1.17

Given an S-scheme T , denote by pT : YT T the base change of the
structure morphism, which is flat and proper because so is Y S. Given
(σ : YT XT ) ∈ SectπT , the composition pT ◦ πT ◦ σ is again pT , hence it
is flat and proper and, since σ is a closed embedding (see Proposition 1.49),
σ itself is an element of HilbX/ST . So, we have defined an injective map
SectπT HilbX/ST , which is clearly natural on T , that is we have showed
that Sectπ is a subfunctor of HilbX/S.

Now, we show that Sectπ HilbX/S is representable by open embed-
dings. An element Z ∈ HilbX/ST corresponds to a closed embedding i :
Z XT such that the composition Z XT T is proper and flat. By Re-
mark 1.76.1, there is an open subscheme UZ of T representing the functor
IsoZYT T and by Proposition 1.15 it satisfies the following universal property:
For every locally Noetherian T -scheme T ′, the base change i ′ :ZT ′ XT ′

of i by T ′ T composed with πT ′ :XT ′ YT ′ is an isomorphism (that is, i ′

can be identified with a section of πT ′ ) if and only if T ′ T factors through
UZ T .

Theorem 3.17. Let p :X Y be a morphism and Z a closed subscheme of X.
LetΩ denote the set of closed subschemesW of Y such that ZW XW is an
isomorphism and denote by ΣΩ the closed subscheme ΣW∈ΩW of Y. If p is
ℵ1-projective, then the scheme ΣΩ represents the functor IsoZp .

By Proposition 1.15, a closed subscheme Y ′ of Y represents the functor
IsoZp if and only if a morphism T Y factorises through Y ′ Y whenever
the closed embedding ZT XT is an isomorphism.

Proof of Theorem 3.17. For everyW ∈ Ω, the isomorphism ZW XW is an
X-morphism, hence the closed embeddings ZW X and XW X corres-
pond to the same closed subscheme of X. Therefore, the schemes ΣW∈ΩZW
andΣW∈ΩXW are the same subscheme ofX and, by Theorem 3.13, the closed
embeddingZ(ΣΩ) X(ΣΩ) is an isomorphism, in fact anX-isomorphism. So,
if a morphism T Y factorises throughΣΩ, the closed embedding ZT XT
is an isomorphism.

Now, given a morphism T Y such that the closed embedding ZT XT
is an isomorphism, by Lemma 1.47, the schematic image T of T Y is a
closed subscheme of Y belonging toΩ. Hence, the closed embedding T Y

http://stacks.math.columbia.edu/tag/05K3
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factorises (obvious uniquely) through ΣΩ Y and then, by composition, so
does T Y.

Theorem 3.18. Let S be a locally Noetherian ground scheme. Let p :X Y be
an S-morphism, with X quasiprojective over S, and let Z be a closed subscheme
ofX. Ifp is projective and flat and Y Noetherian and connected, then the Hilbert
polynomial of the fibres of p is constant, say equal to Φ. If furthermore Y is
separated over S, then the functors IsoZp and [[ΦZ/Y are isomorphic. Moreover,
they are representable and the representing scheme is a closed subscheme Y ′

of Y whose underlying set is

{y ∈ Y such that Zy Xyis an isomorphism}.

Proof. Since p is projective (in particular, proper) it is pure and of finite
presentation (see Remark 3.16.2). Hence, by Theorem 3.15, the functor IsoZp
is representable by a closed subscheme Y ′ of Y. By [22, III2, Chapitre III,
Proposition 7.9.11, Corollaire 7.9.13, p.79 ] the Hilbert polynomial of the
fibres of p is constant. Therefore, there is a natural transformation from
IsoZp to [[ΦZ/Y . Instead of giving its inverse explicitly, we will relegate its
existence to powerful well-known constructions. Indeed, we will show that
the scheme Y ′ is the fibre product of Y with suitable Hilbert schemes and
that such fibre product satisfies the universal property determining [[ΦZ/Y
(see Proposition 1.15). Notice that this is also a proof by its own that IsoZp
is representable in this case.

Consider the Hilbert functor H X/S of X S and fix a morphism (T

Y) ∈ hY(T). By Lemma 1.31, the following diagram is Cartesian.

X×Y T X×S T

Y Y ×S Y

p

∆Y/S

(3.1.1)

Then, since Y S is separated, X×Y T X×S T is a closed embedding.
Since p :X Y is flat and proper, so is its pullback X×Y T T by T Y,
which is equal to the composition of X×Y T X×S T with the projection
X×S T T . Hence, X×Y T belongs to H X/S(T) and now it is straightfor-
ward to see that sending (T Y) ∈ hY(T) to X×Y T ∈ H X/S(T) defines a
natural transformation η : hY H X/S.

Consider the Hilbert functor H Z/S of Z k. We claim that the functor
IsoZp is isomorphic to the fibre product hY ×H X/S

H Z/S, where hY H X/S

is the natural transformation η just defined, and H Z/S H X/S is the nat-
ural closed embedding. Then, it is representable because H X/S and H Z/S are
representable (see [18, Theorem 5.14, p.127]) and the representing scheme
is a closed subscheme of Y because H Z/S is a closed subfunctor of H X/S

(see [18, Lemma 5.17 (ii), p.127]).

Let us check that IsoZp is isomorphic to hY ×H X/S

H Z/S. Fix a morphism

(T Y) ∈ IsoZp(T). So, the base change Z×Y T X×Y T of Z X
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by T Y is an isomorphism. Now, it is almost immediate to see that the
couple ((T Y),Z×Y T) is an element of hY(T)×H X/S(T)

H Z/S(T) and

such assignment defines a natural transformation τ from hY ×H X/S

H Z/S

to IsoZp .
Fix a couple ((T Y),Λ) belonging to hY(T)×H X/S(T)

H Z/S(T), that

is, X×Y T and Λ are isomorphic as X-schemes. Then, since Λ is a closed
subscheme of Z×S T , via the projection Z×S T Z we get an X-morphism
from X×Y T to Z. So, by Lemma 1.32, the closed embedding Z×Y T
X×Y T is an isomorphism, (T Y) ∈ IsoZp(T) and such assignment defines
a natural transformation σ from IsoZp to hY ×H X/S

H Z/S.

Clearly by construction, the natural transformations τ and σ are inverse
to each other.

Let HX, HZ denote respectively the schemes representing the functors
H X/S and H Z/S. By weak Yoneda’s lemma, Lemma 1.7, there are morphisms
Y HX, HZ HX and Y ′ HZ corresponding to the Equation (3.1.1). So,
the following diagram is Cartesian.

Y ′ HZ

Y HX

p

Notice that the morphisms Y HX, Y ′ HZ factorise through the stratum
corresponding to the Hilbert polynomialΦ.

Let T Y be a morphism such that ZT T is flat and the Hilbert
polynomial of the fibres isΦ. Again ZT is a closed subscheme of Z×S T and
ZT T is proper because Z Y is so, hence ZT ∈ H Z/ST . Then, by the
universal property ofHZ, there is a unique morphism T HZ such that ZT
is the pullback by it of the universal family of HZ. Finally, by the universal
property of the pullback, there is a unique morphism T Y ′ such that the
corresponding diagram commutes.

Now, for every point y of Y ′, the closed embedding Zy Xy is an iso-
morphism. Moreover, by Remark 1.73.1, the underlying set of Y ′ is

{y ∈ Y such that the Hilbert polynomial of Zy isΦ}.

Hence, if y 6∈ Y ′, then the Hilbert polynomial of Zy is di�erent from the one
of Xy and Zy Xy is not an isomorphism.

Let S be a ground scheme. As a first application, we will show how to
retrieve the universal section family of an S-morphism π :X Y restricted
to a closed subscheme Z of X from the universal section family of π.

Theorem 3.19. Let S be a ground scheme. Let π :X Y be an S-morphism
and i :Z X a monomorphism. Assume that the universal section family

(X,ψ) of π exists. Then, the functors Sectπ|Z and Isoψ
−1(ZX)

YX X
are isomorphic.

In particular, they are equivalently representable and, when they are represent-
able, they are represented by the same scheme.
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Proof. Let T be an S-scheme. Given a T -family of sections σ : YT ZT of
π|Z, by Lemma 1.32, the pullbackϕ of ZT XT by iT ◦σ is an isomorphism.
Since iT ◦σ is a T -family of sections of π, by the universal property of (X,ψ),
there is a unique morphism fσ : T X such that ψT = iT ◦ σ. Now, it is
straightforward to check that the base change of ψ−1(ZX) YX by fσ is
the isomorphism ϕ. Hence,

Isoψ
−1(ZX)

YX X
(T) = {∗}.

On the other hand, given a morphism T X such that the base change
of ψ−1(ZX) YX by it is an isomorphism, the inverse of this isomorphism
gives a T -family of sections YT ZT .

3.1 .3 The constfy closed subscheme

Finally, everything is ready to quickly present the constfy closed subscheme.

Definition 3.20. Let S be a ground scheme. Let p :X Y and f :X W

be S-morphisms. Let Y ′ be a closed subscheme of Y. We call Y ′ a f-constfy
closed subscheme of Y, if the morphism f|XY ′ :XY ′ W is constant along
the fibres of the projection XY ′ Y ′ and it satisfies the following universal
property: A morphism T Y factorises through Y ′ Y if and only if
(XT X)∗(f) is constant along the fibres of the projection XT T .

If a f-constfy closed subscheme exists, by abstract nonsense it is uniquely
determined up to a unique isomorphism and therefore it is unique.

Remark 3.20.1. Consider the following Cartesian.

Z W

X×Y X W ×SW

p
∆W/S

f×Yf

Consider Z as a Y-scheme. For every morphism T Y, the following dia-
gram is Cartesian (see Lemma 1.30).

ZT Z W

XT ×T XT X×Y X W ×SW

T Y

p p
∆W/S

p

f×Sf

Theorem 3.21. Let S be a ground scheme. Let p :X Y and f :X W be
S-morphisms. Consider the following Cartesian diagram.

Z W

X×Y X W ×SW

p
∆W/S

f×Yf
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Set g :X×Y X Y. If W is separated over S and p is flat and proper, then
the f-constfy closed subscheme of Y exists and it is the scheme representing the
functor IsoZg .

Proof. SinceW is separated, Z X×Y X is a closed embedding and, since p
is flat and proper, so is g :X×Y X Y. Hence, by Theorem 3.15, the functor
IsoZg is represented by a closed subscheme Y ′ of Y.

By Remark 3.20.1, it is clear that ZY ′ (XY ′ ×Y ′ XY ′) is an isomorph-
ism, and then f|XY ′ is constant along the fibres of the projection XY ′ Y ′.
Furthermore, by the universal property of Y ′ and again by Remark 3.20.1,
it is clear that a morphism T Y factorises through Y ′ Y if and only if
ZT (XT ×T XT ) is an isomorphism, that is, if and only if (XT X)∗(f) is
constant along the fibres of the projection XT T .

Remark 3.21.1. Let S be a ground scheme. Let p :X Y and f :X W

be S-morphisms. Let Z X be a closed subscheme of X. In this situation,
we may compose the constructions of the f-constfy closed subscheme of
Y and the closed subscheme of Y representing the functor IsoZp . Assuming
existence, it is straightforward to see that both possible ways of composing
such constructions give the same closed subscheme of Y.
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3.2 split sections in family

In this section we study a variant of the universal section family. Consider
the following situation.

Situation 3.22. Let S be a Noetherian ground scheme. Let X, Y and T be
S-schemes with Y S an fpqc morphism. Let π :X Y and α :X T be
S-morphisms. Denote by π ′ :X YT the product of π and α.1

X

YT T

Y S

π ′

π

α

p

fpqc

Our goal is parametrise sections of π :X Y, but just those sections
whose image is contained in some fibre of α :X T . We consider α :X T

as a morphism spli�ing the ambient space X by means of its fibres. So,
the universal split section family is the scheme solving the parameter space
problem of sections of π whose image is contained in some fibre of α.

Definition 3.23. Consider Situation 3.22. Let T ′ be an S-scheme and q :
XT ′ X the projection. We say that a T ′-family of sections σ over π is
T -split, if the morphism YT ′

σ XT ′
q
X α T is constant along the fibres of

the projection p : YT ′ T ′. In this case, we also call σ a T ′-family of T -split
sections over π.

XT ′ YT ′ T ′

X Y S

T

πT ′

q
σ

p

π

α

Let Y be an S-scheme andψ a Y-family of T -split sections over π. We call
the couple (Y,ψ) a universal T -split section family of π (or T -Ussf for short)
if it satisfies the following universal property: For every S-scheme T ′ and
every T ′-family of T -split sections σ overπ, there is a unique S-morphism h :
T ′ Y such that hX ◦ σ = ψ ◦ hY , or equivalently, such that the following
diagram is Cartesian.

YT ′ XT ′ YT ′

YY XY YY

σ

hY
p

πT ′

hX
p

hY

ψ πY

1 The morphism π ′ plays no role until Proposition 3.27.
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Remark 3.23.1. Let T ′′ be an S-scheme and σ ′ a T ′′-family of T -split sec-
tions over π. As it happens for families of sections over π, the collection of
families of T -split sections over π form a category STπ where an arrow from
σ to σ ′, denoted by (T ′,σ) (T ′′,σ ′), is a morphism h : T ′′ T ′ such
that hX ◦ σ ′ = hY ◦ σ, or equivalently, such that σ ′ is the base change of
σ by h. This is the same notion of an arrow in the category of families of
sections over π (see Remark 1.60.1 and the proof of Proposition 1.61), that
is, the category STπ is a full subcategory of Sπ.

If a T -Ussf exists, by abstract nonsense it is uniquely determined up to a
unique isomorphism.

Remark 3.23.2. Since Y S is an fpqc morphism, so is YT ′ T ′ and, by
Proposition 1.51, a T ′-family of sections σ over π is T -split if and only if
there is a (unique) S-morphism f : T ′ T such that α ◦ q ◦ σ = f ◦ p, or in
other words, if and only if T ′ is a T -scheme and p is a T -morphism, where
YT ′ is a T -scheme via α ◦ q ◦ σ.

Let q ′ :XT ′′ T ′′ and p ′ : YT ′′ T ′′ be the projections and f ′ : T ′′ T

the unique morphism such that α ◦ q ′ ◦ σ ′ = f ′ ◦ p ′. Then, if a morphism
h : T ′′ T ′ determines an arrow (T ′,σ) (T ′′,σ ′) of families of T -split
sections, then, by the uniqueness of f ′, the following diagram commutes.

T ′′ T ′

T

h

f ′ f

Definition 3.24. In Situation 3.22, we define Sect Tπ :SchS Set, the
contravariant functor corresponding to the parameter space problem of T -
split sections over π, as follows. For every S-scheme T ′, set

Sect TπT ′ = {σ ∈ Sectπ(T ′) such that σ is T -split} ⊆ SchYT (YT ,XT ),

and for every S-morphism f : T ′′ T ′, the map Sect Tπf : Sect TπT ′ Sect TπT ′′
sends a T ′-family of T -split sections σ : YT ′ XT ′ over π to its base change
σT ′′ : YT ′′ XT ′′ by f, which clearly is a T ′′-family of T -split sections over π.

Lemma 3.25. Consider Situation 3.22. Assume that the Usf (X,ψ ′) of π exists
(so, X is an S-scheme and ψ ′ is a section of πX :XX YX satisfying the
corresponding universal property). Denote by q :XX X the projection. If the
(α ◦ q ◦ψ ′)-constfy closed subscheme Y of X also exists, then the T -Ussf of
π is the couple (Y,ψ) where ψ = ψ ′|YY .

Proof. By construction the couple (Y,ψ) is a Y-family of T -split sections
over π. So, we just need to check that it satisfies the required universal
property.

Let T ′ be an S-scheme and σ a T ′-family of T -split sections over π. Since
it is a T ′-family of sections over π, by the universal property of (X,ψ ′),
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there is a unique morphism h ′ : T ′ X such that the following diagram is
Cartesian.

YT ′ XT ′ T ′

YX XX X

T

σ

h ′Y
p

h ′X
p

h ′

ψ ′

α◦q

By assumption σ is T -split, that is α ◦ q ′ ◦ σ : YT ′ T (where q ′ :XT ′ X

is the projection) is constant along the fibres of the projection YT ′ , but q ′ =
q ◦ h ′X so that the restriction (α ◦ q ◦ψ ′)|YT ′ is constant along the fibres of
YT ′ T ′. Hence, by the universal property ofY, there is a unique morphism
h : T ′ Y whose composition with the closed embedding Y X is h ′.

Theorem 3.26. Consider Situation 3.22 with S locally Noetherian. If T is
separated, X is at most a countable disjoint union of quasiprojective schemes
over S and Y proper and flat over S, then the T -Ussf of π exists and its under-
lying scheme is locally Noetherian and at most a countable disjoint union of
quasiprojective schemes.

Proof. By Proposition 1.63, the Usf (X,ψ ′) of π exists and X is locally No-
etherian and at most a countable disjoint union of quasiprojective schemes.
Denote by q :XX X the projection. Now, since Y S is of finite present-
ation, flat and proper (in particular, it is also pure see Remark 3.16.2), so is
YX X. Hence, by Theorem 3.21, the (α◦q◦ψ ′)-constfy closed subscheme
of X exists and the claim follows from Lemma 3.25.

Proposition 3.27. Consider Situation 3.22. Let f : T ′ T be an S-morphism.
Let σ : YT ′ XT ′ be a T ′-family of sections over π. Denote by p : YT ′ T ′ and
q :XT ′ X the projections. Then, σ is T -split with α ◦ q ◦ σ = f ◦ p if and
only if fY = π ′ ◦ (q ◦σ), that is if and only if the following diagram commutes.

X

YT T

Y S

YT ′ T ′

π ′

π

α

p

fY

q◦σ

f

Proof. Since morphisms to YT are determined by their composition with the
projections YT T and YT Y, from σ being T -split with α ◦ q ◦ σ = f ◦ p
follows straightforwardly that fY = π ′ ◦ (q ◦ σ).

If fY = π ′ ◦ (q ◦ σ), then composing with the projection YT Y follows
that f ◦ p = α ◦ q ◦ σ and, by Remark 3.23.2, σ is T -split.
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Remark 3.27.1. Notice that σ is equal to the product of (q ◦ σ) and p and
π is the composition of π ′ with the projection YT Y. Hence, the T ′-family
of sections σ over π is completely determined by (q ◦ σ) and π ′. Moreover,
by Proposition 3.27, the morphism f allows us to check at once whether σ
is T -split or not. So, for convenience in the forthcoming sections, whenever
fY = π ′ ◦ (q ◦ σ), we will refer also to a couple ((q ◦ σ), f) as a T ′-family of
T -split sections over π ′. Moreover, when the T -Ussf (Y,ψ) of π exists, there
is the corresponding morphism h : Y T (and the projection q ′ :XY X),
in this case we also call the triplet (Y,q ′ ◦ψ,h) the T -Ussf of π ′.



4
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Consider the following situation.

Situation 4.1. Let S be a locally Noetherian ground scheme. Let X, Y be
locally Noetherian S-schemes with Y S an fpqc morphism. Consider
the scheme XY = X×S Y and denote by π :XY Y and α :XY X the
projections. Let Z be a closed subscheme of XY .

Z XY X

Y S

cl.emb.

π

α

p

fpqc

The main result of this chapter is Theorem 4.3, which asserts the exis-
tence of the blow up split section family of the projection XY Y along Z
(see Definition 4.2) under suitable assumptions. The blow up split section
family is a generalisation of blow ups, as such Theorem 4.8 is the correspond-
ing generalisation of the well-known fact that a blow up is an isomorphism
away from its centre.

Definition 4.2. Consider Situation 4.1. Let B be an S-scheme and b : B
X an S-morphism.

(bY)
−1(Z) BY B

Z XY X

p
bY

p

α

We call the couple (B,b) a blow up split section family of π along Z (or blow
up §family for short) if (bY)−1(Z) BY is an e�ective Cartier divisor and it
satisfies the following universal property: For every S-morphism g : T X

for which (gY)
−1(Z) TY is an e�ective Cartier divisor, there is a unique

morphism h : T B such that b ◦ h = g. Analogously to classic blow ups,
we call Z the centre of the blow up §family and b−1(XY) the exceptional
divisor in BY .

For examples see Section 4.1, in particular Example 4.12, which is com-
puted by hand.

If a blow up §family exists, by abstract nonsense it is uniquely determined
up to a unique isomorphism.

Theorem 4.3. Consider Situation 4.1. If moreover XY is at most a countable
disjoint union of quasiprojective schemes over S, X S is separated and Y S

is proper and with geometrically integral fibres, then the blow up §family of π
along Z exists.

67
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Proof. Consider the blow up bl : bl(Z,XY) XY of XY along Z. The scheme
bl(Z,XY) is again at most a countable disjoint union of quasiprojective
schemes overS. Hence, by Theorem 3.26, theX-Ussf (Y,ψ, v) of bl(Z,XY)
Y exists (so, ψ : YY bl(Z,XY), v : Y X are morphisms such that bl ◦ψ =

vY and the scheme Y is locally Noetherian and at most a countable disjoint
union of quasiprojective schemes).

Finally, since the preimage of Z by vY is the preimage by ψ of the ex-
ceptional divisor in bl(Z,XY), it is a locally principal subscheme of YY and,
by Theorem 2.8, there is a closed subscheme B of Y such that the closed
embedding BY YY is the blow up of YY along (vY)

−1(Z). Denote by b :
B X the restriction of v to B.

Now, it is straightforward to check that the couple (B,b) is the blow up
§family of π along Z. It follows by applying iteratively the universal proper-
ties of the objects used to construct B and, at the last step, Theorem 2.8.

The blow up §family can be defined, and a suitable version of Theorem 4.3
proved, when in Situation 4.1 the square is not necessarily Cartesian. Nev-
ertheless, we restrict to this case for the sake of simplicity and because this
is the unique case we will use. Furthermore, Theorem 4.8 below uses that
such square is Cartesian.

Consider Situation 4.1 assumingX connected andY integral and projective
over S. In this situation, we may state Theorem 4.8 below, the generalisation
to blow up §families of the well-known fact that a blow up is an isomorphism
away from its centre. We need to introduce some notation and, for the con-
venience of the reader, we also introduce Lemma 4.4 below, which extracts
the parts of [18, Lemma 9.3.4, p.258] and [60, Tag 062Y] we are interested in.

Lemma 4.4. Let X be a ground scheme. Let X ′ be a flat X-scheme locally of
finite presentation (e.g., ifX is locally Noetherian). LetZ be a closed subscheme
of X ′ and z a point of Z with image x in X.

(a) If Z X is locally of finite presentation and flat, and the fibre Zx X ′x
is an e�ective Cartier divisor, then Z is an e�ective Cartier divisor of X ′

in an open neighbourhood of z. In particular, if all the fibres Zx X ′x
are e�ective Cartier divisors, then Z is an e�ective Cartier divisor of X ′.

(b) If Z is a locally principal subscheme of X ′ and all the fibres Zx X ′x
are e�ective Cartier divisors, then Z is an e�ective Cartier divisor of X ′

and flat over X.

Notation 4.5. Consider Situation 4.1 assuming X connected and Y projec-
tive over S (so XY X is also projective). The fla�ening stratification of the
morphism Z X is a finite stratification

X = tΦ∈Q[t]XΦ

by locally closed subschemes such that for every Φ, the pullback of Z X

by XΦ X is flat and the Hilbert polynomial of the fibres is constant equal

http://stacks.math.columbia.edu/tag/062Y
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to Φ, and moreover, a morphism T X factorises through tΦXΦ X if
and only if the projection ZT T is flat (see Section 1.6).

Since XY X is flat and projective and X is connected, the Hilbert poly-
nomial of its fibres is constant, say equal to Φ0 ∈ Q[t]. By Theorem 3.15
and Remark 3.16.2, the functor IsoZXY X is representable by a closed sub-
scheme X0 of X. Observe that, by Remark 3.14.2, the underlying sets of
XΦ0 and X0 are equal. In fact, under slightly stronger assumptions they are
isomorphic, see Theorem 3.18.

By Lemma 4.4 (a), for everyΦ, the points x ∈ XΦ for whichZx (XY)x =

Yx is an e�ective Cartier divisor form a (possibly empty) open subscheme of
XΦ; we denote it by UΦ.

We present a simple example showing that, with no extra assumptions,
even if all the fibres Zx (XY)x are e�ective Cartier divisors, Z is not
necessarily an e�ective Cartier divisor of XY . Consider X an a�ine line, A1

k
for some base field k. Consider Y the projective line P1k over k. For Z any
closed point z of XY , every fibre Zx (XY)x is either ∅ P1κ(z) or {z} P1k,
which both are e�ective Cartier divisors.

Denote by x0 the image of z by Z X and set X1 = X \ {x0} and X2 =
{x0}. Regarding Notation 4.5, observe that X = X1 t X2 is the fla�ening
stratification of Z X because, for i = 1, 2, the scheme ZXi is flat over Xi,
and moreover it is an e�ective Cartier divisor in (XY)Xi .

Remark 4.5.1. By [26, Théorème 2.1 (i), p.231], if furthermore Y is smooth
over S, the open subscheme UΦ of XΦ is also a closed subset. Hence, UΦ is
either the empty scheme or a union of connected component of XΦ.

Definition 4.6. Consider Situation 4.1 assuming X connected and Y projec-
tive over S. We call a point x of X type I if x belongs to some UΦ and type
II otherwise. In particular, if Y is smooth over S, by Remark 4.5.1, each con-
nected component of each stratum XΦ is filled up with either type I or type
II points. In this case, we also call respectively each connected component
of each stratum type I or type II.

Definition 4.7. Consider Situation 4.1 assuming X connected and Y projec-
tive over S. Consider also Notation 4.5. We call the scheme X0 the core of
the blow up §family of π along Z.

Theorem 4.8. Consider Situation 4.1 assuming X connected and Y integral
and projective over S. Consider also Notation 4.5. Assume that the blow up
§family (B,b) of π along Z exists. Then, the open subscheme B \ b−1(X0) of
B is isomorphic to tΦUΦ.

Proof. Denote by E the exceptional divisor in BY , that is E = (bX)
−1(Z).

The closed subschemeb−1(X0) ofB represents the functor IsoEBY B, hence
B \ b−1(X0) is the set of points b ∈ B for which Eb Yb is not an
isomorphism. Then, since E BY is an e�ective Cartier divisor and Y
is integral, B \ b−1(X0) is the open subset corresponding to the set of
points b ∈ B for which Eb Yb is an e�ective Cartier divisor. Then,
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by Lemma 4.4 (b), E∩ (B \b−1(X0)) B \b−1(X0) is flat and then, by the
universal property of the fla�ening stratification, there is a unique morphism
B \ b−1(X0) tΦXΦ (whose image clearly is contained in tΦUΦ) such
that the corresponding diagram commutes. Hence, it factorises through
tΦUΦ tΦXΦ via a unique morphism ξ : (B \ b−1(X0)) tΦUΦ.

Now, by construction and by Lemma 4.4 (a), ZtΦUΦ XtΦUΦ is an
e�ective Cartier divisor, hence, by the universal property of (B,b), there is
a unique morphism tΦUΦ B (whose image is contained in B \ b−1(X0)

because UΦ0 is empty) such that the corresponding diagram commutes. So
finally, tΦUΦ B factorises through a unique morphism ε : tΦ UΦ
(B \ b−1(X0)).

Now, it is straightforward to check that ξ and ε are mutually inverse.

Corollary 4.8.1. Consider Situation 4.1 assuming X connected and Y integral
and projective over S. If there is no point x of X such that the fibre Zx Yx
is an isomorphism, then the blow up §family of π along Z exists and it is the
natural morphism tΦUϕ X.

Proof. In this case the core of the blow up §family is empty.

Corollary 4.8.2. For every irreducible component B of B, if b(B) 6⊆ X0, then
B is birational to an irreducible component of the closure of a stratum XΦ.

More explicitly, b|B :B XΦ decomposes as B
i
B ′ b

′
XΦ where i is an open

embedding and b ′ is a blow up morphism whose centre fails to be Cartier only
on the core X0. In particular, if the closure of the stratum XΦ, for some Hilbert
polynomial Φ, does not intersect X0, then b|B is an open embedding.

Now, we present an example showing that in Remark 4.5.1 the assumption
X smooth over S is required. It is based in Hartshorne’s example of a flat
family of rational normal curves with a singular fibre [32, Example 9.8.4,
p.259]. We focus on the relevant a�ine chart. Set A = k[a], R = k[x,y, z]
and B = (A⊗k R)/I where

I =
(
a2(x+ 1) − z2, ax(x+ 1) − yz, xz− ay, y2 − x2(x+ 1)

)
.

Consider X = Spec(B), S = Spec(A) and X S given by the natural
homomorphism A B. Since A is a pid and A B has no torsion, B is a
flat A-module and X S is flat. It is not hard to check that X is singular at
the origin (a, x,y, z), hence X S is not smooth.

Observe that when a 6= 0,

1

a

(
z · (ay− xz) + x · (a2(x+ 1) − z2)

)
= ax(x+ 1) − yz

1

a2

(
(ay+ xz) · (ay− xz) − x2 · (a2(x+ 1) − z2)

)
= y2 − x2(x+ 1).

Hence, when a 6= 0, the fibre Xa of the family X S corresponds to the
ring R/Ia, where

Ia =
(
ay− xz, a2(x+ 1) − z2

)
,



4.1 examples 71

which is a rational normal curve. Instead, the fibre X0 at a = 0 corresponds
to the ring R/I0 where

I0 =
(
z2,yz, xz,y2 − x2(x+ 1)

)
,

which is nodal curve with a non-reduced structure at the origin. Now, con-
sider C = (R⊗k A)/J where

J =
(
x, y, a− z

)
.

Observe that I ⊆ J. Indeed, except a2(x+ 1) − z2, all the other generator
of I belong to the ideal (x,y) and

a2 · (x) + (a+ z) · (a− z) = a2(x+ 1) − z2.

Consider Z = Spec(C), which corresponds to a line C ∼= k[a, z]/(a− z),
and consider Z X given by the natural homomorphism B C. So, the
composition Z S is flat and smooth. Now, when a 6= 0, the fibre Za of
Z S is a point corresponding to the ring R/Ja where formally Ja = J but
now a is an element of k, that is

R/Ja ∼= k[z]/(a− z).

Observe that when a 6= 0,

1

a2

(
−(a+ z) · (a− z) + (a2(x+ 1) − z2)

)
= x

1

a

(
z · (x) − (xz− ay)

)
= y.

hence Ja/Ia = (z− a) ⊆ R/Ia where z− a is a non-zerodivisor of R/Ia,
and then Za Xa is an e�ective Cartier divisor. Instead, when a = 0, the
ideal J0 is (x,y, z), and the ideal J0/I0 = (x,y, z) ⊆ R/I0 is generated by
zerodivisors and it is not even principal. Hence, Z0 X0 is not an e�ective
Cartier divisor.

Observe that the ring of functions of Z0 is reduced, since Z0 is a flat limit
of a family of single simple points, but it is also possible to get a non reduced
scheme as a flat limit of e�ective Cartier divisor. Indeed, consider the ideal
(x,y,a2 − z2) ⊆ R⊗k A, which also contains I. It corresponds to a family
in X flat and non-smooth over S, for which the fibre at a 6= 0 is a union of
two simple points (which form an e�ective Cartier divisor of Xa), but the
fibre at a = 0 is a double point (which is not an e�ective Cartier divisor of
X0).

4.1 examples

In this section, we recover two classic constructions, the classic blow up
(see Proposition 4.10) and an example of a small resolution, both as particular
cases of the blow up §family.



72 the blow up split section family

We also present an example showing that the blow up §family may also be-
have quite di�erent from such classic constructions, namely, the dimension
of the ambient scheme may decrease.

Example 4.9 (The classic blow up). The following proposition shows the
classic blow up as a particular case of the blow up §family.

Proposition 4.10. Consider Situation 4.1. Assume that there is a closed sub-
scheme W of X such that Z = WY . Let b : B X be the blow up of X along
W. Then, the couple (B,b) is the blow up §family of π :XY Y alongWY . In
particular, when β = 1S, the blow up §family agrees with the classic blow up.

Proof. It follows straightforwardly from the fact that Y S is flat and blow
ups commute with flat base changes (see [60, Tag 0805]).

Example 4.11 (The dimension may decrease). We show an example of the
blow up §family where an irreducible ambient space breaks down into two
irreducible components and the dimension of one of them decreases by one.

Consider S = P1u,v ×P2x,y,z and Z ⊆ S the graph of [u : v] ∈ P1 [u :

v : 0] ∈ P2, that is Z = V+(z, vx− uy).

By Corollary 4.8.1, the blow up §family of the projection S P1 along Z
is the stratification of P2 by the standard a�ine chart P2 \V+(z) and V+(z).

Example 4.12 (Small resolution). We present an example where the blow
up §family along a natural centre becomes a small resolution. It indicates the
possibility that the blow up §family would o�er a procedure to systematise
small resolutions.

Let k be a field and consider the variety A4
k parametrising matrices

M =

(
x y

z w

)

and the closed subvariety D ⊆ A4 where the rank of M is not maximal,
or equivalently where the determinant of M is zero. Consider the variety
S = P1u,v ×D and its incidence subvariety

Z = {([λ],M) ∈ S : Mλt = 0}.

It is a classic result that the projection S D restricted to Z is a small
resolution of D. It turns out that the blow up §family of the projection
S P1 along Z is isomorphic to Z and then again an small resolution ofD.

Observe that, by Theorem 4.8, the varietyD \ {0} is an open subvariety of
such a blow up §family. But we do not retrieve the whole ambient variety
from this result. Instead, we replicate the construction of the blow up §family
in Theorem 4.3.

http://stacks.math.columbia.edu/tag/0805
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First, let us construct the following quasiprojective varieties Vn. Let S
denote the standard graded polynomial ring k[u, v] and Sn its degree n
part. So, we define Vn ⊆ P(Sn × Sn × Sn) as the quasiprojective variety
corresponding to triplets of forms with no common roots.

The blow up S̃ of S alongZmay be given globally by the equations xa− zb
and ya−wb in S×P1a,b.

Now, we describe the closed subvariety of the universal section family of
S̃ P1 corresponding to “constfy” by S̃ D. Namely, it is the disjoint
unionX for all integersn of the closed subvarietiesXn ofD×Vn determined
by the equations on the coe�icients given by the identities of polynomials,

xA− zB ≡ 0
yA−wB ≡ 0

where [A : B] ∈ Vn (see example a�er Definition 3.14). The resulting mor-
phism b ′ :X D is for each component Xn the composition of the closed
embedding Xn D× Vn and the projection D× Vn D.

It is straightforward to see that given ((x,y, z,w), [A : B]) ∈ Xn either
the forms A,B are constants or (x,y, z,w) = 0. That is, for all n > 1,
Xn = {0}× Vn and

X = X0
∐ (∐

n>1

{0}× Vn
)

where X0 ∼= Z. So, the pullback (1P1 × b ′)−1(Z) is an e�ective Cartier
divisor in P1 ×X0 and the whole P1 ×Xn for all n > 1. Hence the blow up
of P1 ×X along the locally principal (1P1 × b ′)−1(Z) is P1 ×X0, and then
the blow up §family of S P1 along Z is b ′|X0 :X0 D.





5
CLUSTERS IN FAM I LY

Let S be a ground scheme and π an S-morphism. In this chapter, we intro-
duce the main notions of this memoir, length-r clusters over π (see Defini-
tion 5.7), families of clusters (see Definitions 5.8 and 5.9) and their parameter
spaces Clr (see Definition 5.16). Our construction of such parameter spaces
requires that certain blow ups commute with arbitrary base changes. To this
end, we need to impose some regularity conditions on π, which leads us to
the notion of steady S-family (see Definition 5.5).1

We define the schemes Clr via universal properties, so our first result, The-
orem 5.19, is its existence under finiteness assumptions on π. In Section 5.4
we show that the blow up §family is the iterative step relating the scheme
Clr+1 with the scheme Clr, Theorem 5.37. More precisely, the blow up §fam-
ily B of ClrClr−1 Clr along a suitable closed subscheme is a closed subscheme
of Clr+1 (see Corollary 5.35.1), which parametrises pairs of clusters of π and
their flat limits. There also is a closed subscheme (Clr+1)E of Clr+1 para-
metrising those clusters of π whose r+ 1-th section is infinitely near to the
r-th (see Theorem 5.30). And Theorem 5.37 shows that (Clr+1)red is a closed
subscheme of B+ (Clr+1)E.

5.1 clusters

We start fixing the notion of a family, the class of morphisms for which we
will parametrise its families of clusters of sections.

Definition 5.1. Let S be a ground scheme and π :X Y a morphism. We
call π an S-family if it is an S-morphism, fpqc and separated, the S-schemes
X and Y are of finite type, Y is irreducible and the generic fibre ofπ is integral.
The scheme Y is called the base and the scheme X the ambient space.

Example 5.2. When S is a base field k and X, Y are a�ine, then π corres-
ponds to a faithfully flat homomorphism of k-algebras of finite type ϕ :

A B, where the nilradical η of A is a prime ideal and B/ϕ(η) is integral.

This notion, for us, is still too wild. We need to impose some regularity
conditions on the families that we consider (see Sections 2.2 and 5.2), which
leads us to the notion of a steady family, Definition 5.5 below.

Definition 5.3. Let S be a ground scheme. Let π :X Y be an S-family.
We call π spli�ing weakly linear (or that π splits weakly linear), if all its
sections (which are closed embeddings, see Proposition 1.49) are weakly
linear (see Definition 2.13).

1 This is an almost ad-hoc definition imposing that “when we require it”, blow ups commute
with arbitrary base changes.

75
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Lemma 5.4. Let S be a ground scheme. Let π :X Y be a spli�ing weakly
linear S-family. Let σ be a section of π. Then, the morphism Xσ Y is an
S-family.

Proof. The morphism Xσ Y is separated, surjective and, by Remark 2.14.1,
flat. Finally, the generic fibre η of Xσ Y is integral because, by Proposi-
tion 2.14, η is a blow up of the (integral) generic fibre of π.

Definition 5.5. Let S be a ground scheme. Let π :X Y be an S-family.
We call π long spli�ing weakly linear if, for every sequence of blow ups

Xr Xr−1 . . . X

whose centre Ci ⊆ Xi is the image of a section Xi Y, the S-families
Xi Y split weakly linear. We call π steady if it is universally long spli�ing
weakly linear, that is, for every morphism T S, the T -family πT :XT YT
is long spli�ing weakly linear.

Example 5.6. If a closed subscheme Z of a locally Noetherian scheme X is
local complete intersection, that is the quasi-coherentOX-ideal I correspond-
ing to Z can be locally generated by a regular sequence, then the symmetric
and the Rees algebra of I are isomorphic, (the original result is due to Hun-
eke, see [34, Theorem 3.1, p.269], or more recently [14, Exercise 17.14 (a),
p.445]). In a Noetherian ring an ideal generated by a regular sequence can
be generated by a d-sequence (see [34, Examples of d-sequences (1), p.1]
and [14, Exercise 17.6, p.442]). So, examples of steady S-families π :X Y

are:

• π is smooth: Smooth is stable by base change and a section of a smooth
morphism is local complete intersection,

• the schemes X and Y are smooth over S: A smooth subscheme of a
smooth scheme is local complete intersection and smooth is stable by
base change.

Definition 5.7. Let π :X Y be a separated morphism. Given a sequence
of blow ups

Xr+1 Xr . . . X2 X1 = X

whose i-th centre Ci ⊆ Xi is the image of a section ti of Xi Y, we call the
sequence (t1, . . . , tr) an ordered cluster over π (or for short a cluster over π).
We call the integer r the length of the cluster.

Let S be a ground scheme and π :X Y a separated S-morphism. Notice
that, since a section ofπ is an S-morphism for free, the notion of clusters over
π is independent from considering π as a morphism or as an S-morphism.

Usually, clusters over π are interpreted as a sequence of arbitrarily near
Y-points of the Y-scheme X. From this point of view, families of clusters
over π are parametrised by Y-schemes T and the clusters in the family are
parametrised by the Y-points of T . That leads to Definition 5.8 below.
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Our new, and more general, point of view consists in interpreting a cluster
over π as a sequence of arbitrarily near sections of the S-morphism π. Hence
now, families of clusters over π are parametrised by S-schemes T and the
clusters in the family are parametrised by the S-points of T . This leads to
Definition 5.9 below.

Definition 5.8. Let X Y be a separated morphism. Let T be a Y-scheme.
A T -family of clusters of points over π (or of point-clusters for short) is an
ordered cluster over the projection XT T .

Definition 5.9. Let S be a ground scheme. Let π :X Y be a separated
S-morphism. Let T S be a morphism. A T -family of clusters of sections
over π (or of section-clusters for short) is an ordered cluster over the base
change πT :XT YT of π by T S.

Although not immediately obvious, there is a vast di�erence between
families of point-clusters and of section-clusters.

For example, consider clusters of length one. The scheme parametrising
families of point-clusters over a Y-scheme X Y always exists, indeed it
is simply the scheme X itself. In contrast, the scheme parametrising fam-
ilies of section-clusters over an S-morphism π :X Y is, when it exists,
the universal section family of π, which is typically infinite dimensional
(see Section 1.5)

As another example, consider the absolute case when S is the spectrum
of a field k. On one side, we consider clusters over a k-scheme X k.
So, every ordered pair of distinct closed points (p,q) of X can be identified
with a cluster over X, simply consider the sequence (p,q ′), where q ′ is the
preimage of q by the blow up of X along p.

On the other hand, we consider clusters over a k-morphism π :X Y. So
now, given an ordered pair of sections (σ, τ) of π, we may consider the strict
transform τ̃ of τ by the blow up Xσ of X along σ, but τ̃ is not necessarily a
section of Xσ Y. In fact, it is not hard to see that τ̃ determines a section of
Xσ Y if and only if σ×X τ (the intersection of σ and τ in X) is an e�ective
Cartier divisor of σ. This phenomenon motivates the following definition.

Definition 5.10. Letπ :X Y by a morphism. We say that a pair of sections
σ,σ ′ of π is admissible (or σ is admissible with respect to σ ′) if σ×Y σ ′ is
an e�ective Cartier divisor of σ, or equivalently, of σ ′.

When the scheme Y is smooth integral and of dimension one, there are no
restrictions on the admissible pairs of sections. We will see examples where
the existence of non-admissible pairs of sections has drastic consequences.
Namely, the dimension of the parametrising scheme may decrease as we
enlarge the length of the clusters to parametrise, see Example 5.40. As an
immediate consequence, given integers s < r, in general we will not be able
to recover the scheme parametrising section-clusters of length s from that
of length r.

We finish defining some elementary but handy manipulations of clusters.
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Definition 5.11. Let S be a ground scheme. Let π :X Y be an S-scheme.
Let t = (t1, . . . , tr) be a cluster over π and

Xr+1 Xr Xr−1 . . . X2 X1 = X
b

its corresponding sequence of blow ups. The switch down of t, denoted by
t↓, is the length-(r− 1) cluster (t1, . . . , tr−2,b ◦ tr) over π.

Given a section tr+1 : Y Xr+1 of Xr+1 Y, the extension of t by tr+1,
denoted by tt tr+1, is the length-(r+ 1) cluster (t1, . . . , tr, tr+1) over π.

Given an integer 1 6 s 6 r, the truncation of t at s, denoted by t|s, is the
length-s cluster (t1, . . . , ts) over π.

Notice that, given another cluster t ′ = (t ′1, . . . , t
′
r) over π with sequence

of blow ups

X ′r+1 X ′r . . . X ′2 X ′1 = X

if, for some s 6 r, the truncations t|s and t ′|s are equal, then Xi = X ′i for all
i = 1, . . . , s+ 1. That allows the following definition.

Definition 5.12. Let S be a ground scheme. Let π :X Y be an S-scheme.
Let t = (t1, . . . , tr), t ′ = (t ′1, . . . , t

′
r) be clusters over π with t|r−1 = t ′|r−1.

We say that the pair t, t ′ is admissible (or t admissible with respect to t ′) if
the pair of sections tr, t ′r is admissible.

5.2 parametrising families of clusters

Let π :X Y be a separated morphism. Kleiman [38, Section 4.1, p.36]
constructed inductively a sequence of (separated) maps fr :Xr+1 Xr for
r > 0 as follows.1 Define f0 :X1 X0 to be π :X Y. Now, assume fr−1
defined. Consider the Cartesian product of Xr with itself over Xr−1 and
consider its diagonal subscheme ∆, which is a closed subscheme because
fr−1 is separated. Define Xr+1 to be the corresponding residual scheme
(see introduction to Chapter 2) and define fr to be the composition of the
structure map p and the second projection p2.

Xr+1= R(∆,Xr ×Xr−1 Xr)

Xr Xr ×Xr−1 Xr ∆

Xr−1 Xr

p

fr−1

p1

p2
q

fr−1

In this section, we generalise Kleiman’s construction of iterated blow ups
to parametrise families of section-clusters. We define the functor for the
parameter space of families of section-clusters, Cl , and we show that it is

1 We reproduce the construction word for word as it is done in [38].



5.2 parametrising families of clusters 79

a subfunctor of a suitable Hilbert functor representable by locally closed
embeddings, reducing its representability to that of such a Hilbert functor.

In general, families of section-clusters do not necessarily form a functor,
nor even a category. Notice that this is already the case for families of point-
clusters. In order to define the functor Cl or a morphism between families of
section-clusters, we need to iteratively construct a sequence of morphisms
(Proposition 5.14 synthesises both iterative steps). The obstruction we face is
that blow ups do not commute with arbitrary base changes (see Section 2.2).
Our procedure to overcome this di�iculty is not original, indeed we will im-
pose regularity conditions on the involved S-families (namely, we work over
steady S-families, see Definition 5.5) as for example, Kleiman and Piene [41],
who restrict to smooth morphisms or, more similar to us, Kleiman [38] who
imposes conditions implying that blow ups are considered just along loc-
ally complete intersection closed subschemes. Nevertheless, our approach
is slightly di�erent. Steady S-families can be seen as an ad-hoc definition,
imposing the weakest assumptions required to develop the whole theory
(define the functor Cl and the category of families of section-clusters) from
our approach. But, to our knowledge, the only examples of steady S-families
are the ones given in the works of Kleiman and Piene, or very similar.

For convenience in the construction of a morphism between families
of section-clusters and the functor for the parameter space of families of
section-clusters, Cl , we introduce the following two classes of morphisms.

Definition 5.13. Let S be a ground scheme. Let π :X Y be a separated S-
morphism. Let f : T ′ T be an S-morphism. Let (t1, . . . , tr) and (t ′1, . . . , t

′
r)

be respectively T and T ′ families of cluster of sections over π. Given an
integer 1 6 s 6 r, we call a morphism g :X ′s Xs an s-li� by sections of f
if the following diagram commutes.

YT ′ X ′s

YT Xs

fY

t ′s

g

ts

(5.2.1)

Given an integer 1 6 s 6 r+ 1, we call a morphism g :X ′s Xs an s-li�
by projections of f (which is obviously unique, when it exists) if the following
diagram is Cartesian.

X ′s YT ′

Xs YT

g
p

fY
(5.2.2)

Remark 5.13.1. If a morphism g :X ′s Xs is the s-li� by projections
of f, then it is an s-li� by sections of f if and only if Diagram (5.2.1) is
Cartesian, that is t ′s is the base change of ts by f or, with another notation,
t ′s = SectXs YT f(σs), where Xs YT is considered as a T -morphism (see
Lemma 1.30).
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Remark 5.13.2. The 1-li� by projections of f : T ′ T always exists, it is fX.

XT ′ = X
′
1 YT ′

XT = X1 YT

fX
p

fY

Proposition 5.14. Let S be a ground scheme and r > s > 1 integers. Let π :
X Y be a steady S-family. Let f : T ′ T be an S-morphism. Let (t1, . . . , tr)
and (t ′1, . . . , t

′
r) be respectively T and T ′ families of section-clusters over π. If

the s-li� by sections and projections g :X ′s Xs of f exists, then the (s+ 1)-li�
of f by projections also exists. We will denote it by θf(g) :X ′s+1 Xs+1.

Proof. By Remark 5.13.1 and Proposition 2.14 the schemeX ′s+1 isXs+1×T T ′
and then θf(g) is just the projection.

Definition 5.15. Let S be a ground scheme. Let π :X Y be a steady S-
family. Let T and T ′ be S-schemes. Let t = (t1, . . . , tr) and t ′ = (t ′1, . . . , t

′
r)

be respectively T and T ′ families of cluster of sections over π. A morphism
of families of section-cluster (or a cs-morphism for short), denoted by f :
(T ′, t ′) (T , t), is an S-morphism f : T ′ T such that, for every i =

1, . . . , r, the morphism fi :X
′
i Xi, defined recursively as follows, is an i-li�

by sections of f.
The initial morphism f1 is fX :XT ′ XT , which, by Remark 5.13.2, is the

1-li� by projections of f. The assumption that f1 is the 1-li� by sections
gives, by Proposition 5.14, the existence of the 2-li� by projections θf(f1) :
X ′2 X2 of f. Set f2 = θf(f1). Again, the assumption that f2 is also the
2-li� by sections allows to iterate the process.

Clearly, cs-morphisms are stable by composition and identities are cs-
morphisms. So, when π is steady, families of section-clusters over π form a
category Clπ where arrows are cs-morphisms.

Remark 5.15.1 below is the key point for the iterative construction of the
schemes parametrising families of section-clusters. It shows that families
of split sections are the step relating families of section-clusters of lengths r
and r+ 1.

Remark 5.15.1. Let S be a ground scheme. Let π :X Y be a steady S-
family. Let T and T ′ beS-schemes and t = (t1, . . . , tr) and t ′ = (t ′1, . . . , t

′
r+1)

be respectively T and T ′ families of cluster of sections over π. Given a
cs-morphism f : (T ′, t ′|r) (T , t), for all i = 1, . . . , r the morphisms fi :
X ′i Xi are the i-li� by sections and projections of f. In particular, so is
fr :X

′
r Xr and, by Proposition 5.14, the (r+ 1)-li� by projections fr+1 :

Xr+1 Xr+1 of f exists. The following diagram commutes,

YT ′ X ′r Xr

YT ′ YT

tr+1

1Y
T ′

fr+1

p

fY
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and then the couple (fr+1 ◦ tr+1, f) is a T ′-family of T -split sections over
Xr YT . Moreover, the T ′-family of T -split sections (fr+1 ◦ tr+1, f) over π
determines the section tr+1, since tr+1 = (fr+1 ◦ tr+1)×YT 1YT ′ .

Definition 5.16. Let S be a ground scheme and r > 1 an integer. Let π :
X Y be a steady S-family. The r-th universal scheme of families of section-
clusters over π (or r-Ucs for short), denoted by (Clr, τr), is the terminal object
of the category of length-r families of section-clusters, Clπ. That is, Clr is an
S-scheme, τr is a length-r Clr-family of section-clusters of over π and they
satisfy the following universal property: For every S-scheme T and every
length-r T -family of section-clusters t over π, there is a unique morphism
f : T Clr such that it is a cs-morphism f : (T , t) (Clr, τr).

If an r-Ucs over π exists, by abstract nonsense, it is uniquely determined
up to a unique isomorphism. When the r-Ucs (Clr, τr) over π exists, we
denote the corresponding sequence of blow ups by

Xrr+1 Xrr . . . Xr1 = X
blrr blrr−1 blr1

and the composition π ◦ blr1 ◦ · · · ◦ blri :Xri+1 Y by πri+1.

Definition 5.17. Let S be a ground scheme. Given a steady S-family π :
X Y, consider the contravariant functor Cl rπ :SchS Set (sometimes
we will omit the indices r or π) corresponding to the parameter space prob-
lem of families section-clusters over π of length r defined as follows. It sends
an S-scheme T to the set of sequences of morphisms

Cl rπT = {T -families of section-clusters over π of length r}.

Given an S-morphism f : T ′ T , we build a map Cl πf sending a T -family of
section-clusters t = (t1, . . . , tr) ∈ Cl πT to a T ′-family of section-clusters
t ′ = (t ′1, . . . , t

′
r) ∈ Cl πT ′ for which f : T ′ T is a cs-morphism f : (T ′, t ′)

(T , t). So, the category of elements of Cl rπ will be the category Clπ.
Consider the sequence of blow ups corresponding to t,

Xr+1 Xr . . . X1 = XT .

For s = 1, . . . , r, we construct recursively the section t ′s and the morphism
fs at the same time as follows. Assume that t ′|s and the cs-morphism f :

(T ′, t ′|s) (T , t|s) are defined. Consider the sequence of blow ups corres-
ponding to t ′|s,

X ′s+1 X ′s . . . X ′1 = XT ′ .
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In particular, by Remark 5.15.1, the (s+ 1)-li� by projections fs+1 :X ′s+1
Xs+1 of f is defined and we may consider the following Cartesian diagram.

YT ′ X ′s+1

YT Xs+1

YT ′

YT

fY

(ts+1)T ′

1

fs+1

1

ts+1

fY

(5.2.3)

Se�ing t ′|s+1 = t ′|s t (ts+1)T ′ , that is t ′s+1 = (ts+1)T ′ , we have defined a
length-(s+ 1) T ′-family of section-clusters and a cs-morphism

f : (T ′, t ′|s+1) (T , t|s+1).

Hence, we can iterate the process and, by Remark 5.13.2, we can initiate the
construction with an empty T ′-family of section-clusters and f1 = fX.

Remark 5.17.1. The functor Cl rπ for r = 1 is equal to the functor of sections
Sectπ of π. So, they are equivalently representable and, if they are repres-
entable, the representing schemes are isomorphic. That is, if they exist, the
Usf (X,ψ) of π and the 1-Ucs (Cl1, τ1) over π are isomorphic as families of
sections over π, or equivalently, as families of section-clusters over π.

Remark 5.17.2. Consider π as a Y-morphism, where Y Y is the iden-
tity, let us denote π by f :X Y in order to distinguish this two cases.
Assume that f is a steady Y-family. Given a Y-scheme T , a T -family of
section-clusters over f is a T -family of point-clusters over f. So, the functor
Cl rf :SchY Set is the functor for the parameter space problem of point-
clusters over f. It is well known that, when they exist, Kleiman’s iterated blow
ups br :Xr Y represent the functor Cl rf (see [30, Proposition I.2, p.104] and
[41, Proposition 3.4, p.422]). Se�ing by g : Y S the structure morphism of
Y, the functor Cl rπ is equal to Cl rf ◦P g, where P g is the base change functor
(see Definition 1.33). Hence, by Proposition 1.68, Cl rπ ∼= Sectbr .

Theorem 5.18. Let S be a ground scheme and r > 1 an integer. Let π :X Y

be a steady S-family. Then, a family of section-clusters over π represents the
functor Cl rπ if and only if it is the r-Ucs of π.

Proof. By construction, the category Clπ of families of section-clusters over
π with cs-morphisms as morphisms is the category of elements of Cl rπ.
Hence, the claim follows from Proposition 1.15.

Let S be a ground scheme. Let π :X Y be a steady S-family. Let T be an
S-scheme and t a T -family of section-clusters over π. Then, to every S-point
s :S T of T , we may associate a cluster ts over π. Indeed, a cluster over π
is just an S-family of section-clusters over π. Hence, since the composition
S T S is the identity, Cl r(S T)(t) is an actual cluster over π.



5.2 parametrising families of clusters 83

Corollary 5.18.1. If the r-Ucs (Clr, τr) over π exists, the map sending an
S-point s of Clr to the length-r cluster τrs over π forms a one-to-one corres-
pondence between Clr(S) and the set of length-r clusters over π.

Theorem 5.19. Let S be a locally Noetherian ground scheme and r > 1

an integer. Let π :X Y be both a steady S-family and a steady Y-family
(considering Y as a Y-scheme via the identity). If X is at most a countable
disjoint union of quasiprojective schemes over S and Y is proper and flat over S,
then the r-Ucs (Clr, τr) over π exists and the scheme Clr is locally Noetherian
and at most a countable disjoint union of quasiprojective schemes.

Proof. Let us denote π as a Y-morphism by f :X Y in order to distinguish
it. Consider Kleiman’s iterated blow ups br :Xr Y for the morphism
X Y. In this situation the functor Cl rf :SchY Set is defined and the
Y-schemeXr represents it. Hence, by Remark 5.17.2, Cl rπ ∼= Sectbr . Observe
that Xr is at most a countable disjoint union of quasiprojective scheme so,
by Proposition 1.62, Sectbr is representable.

Whereas Kleiman’s iterated blow ups provide the representability of the
relevant functors, the result is somewhat unsatisfactory, because it hides the
relationship between Clr+1 and Clr under the application of the functor of
sections to Kleiman’s iterated blow up. Now, we shall develop the machinery
necessary for an iterative presentation of the schemes Clr, which will lead
to a slightly more general second existence result.

Notation 5.20. Let S be a ground scheme. Let π :X Y be a steady S-
family. Let T be an S-scheme and t a T -family of section-clusters over π of
length r+ 1. Then, the truncation t|r and switch down t↓ of t are T -families
of section-clusters over π of length r. If the r-Ucs (Clr, τr) over π exists,
truncation and switch down give rise to two cs-morphisms

prt : (T , t|r) (Clr, τr)

brt : (T , t↓) (Clr, τr).

For simplicity, in the particular case that the couple (T , t) is the (r+ 1)-Ucs
of π, we will omit the subindex in the previous notation.

Remark 5.20.1. By the unicity of the cs-morphisms prt and brt, given a
morphism f : T ′ T , se�ing t ′ = Cl r+1π f(t),

prt ′ = p
r
t ◦ f brt ′ = b

r
t ◦ f.

Remark 5.20.2. If furthermore, the (r − 1)-Ucs over π also exists, then
pr−1t ◦ prt = pr−1t ◦ brt as cs-morphisms.

Lemma 5.21. Let S be a ground scheme and r > 1 an integer. Let π :X Y

be a steady S-family. If the r-Ucs (Clr, τr) of π exists, then the functors Cl r+1π

and Sect Clr
πrr+1

(see Definition 3.24) are isomorphic. That is, given an S-scheme
T , there is a one-to-one correspondence between T -families of Clr-split sections
overπrr−1 and T -families of section-clusters of length r+1 overπ, and moreover
it is natural on T .



84 clusters in family

Proof. Fix an S-scheme T . We will construct a natural transformation

η :Cl r+1π Sect Clr
πrr−1

and show it is a natural isomorphism by means of its inverse µ.
Given an element t = (t1, . . . , tr+1) ∈ Cl r+1π T , by Remark 5.15.1, the

couple((
(prt)r ◦ tr+1

)
, prt

)
is an element of Sect Clr

πrr
T (for prt : (T , t|r) (Clr, τr) see Notation 5.20).

Set ηT (t) as this couple. To check that this map is natural on T , fix an
S-morphism f : T ′ T and set t ′ = (t1, . . . , t ′r+1) = Cl r+1f(t). By Re-

mark 5.20.1, prt ′ = p
r
t ◦ f, and by functoriality of Cl r+1, (prt ′)r = (prt)r ◦ fr.

Hence, ηT ′ sends t ′ to the couple((
(prt)r ◦ fr ◦ t ′r+1

)
,
(
prt ◦ f

))
.

For the other side, by definition, the map Sect Clr
πrr
f sends ηT (t) = (((prt)r ◦

tr+1),prt) to the couple ((prt ◦ tr ◦ fY), (prt ◦ f)). So, we just need to check
that (prt ◦ f)r ◦ t ′r = prt ◦ tr ◦ fY , which is clear by definition of t ′r, see Dia-
gram (5.2.3).

An element of the set Sect Clr
πrr
T is a T -family of Clr-split sections (σ,g)

overπrr+1 :X
r
r+1 YT , that is σ : YT Xrr+1 and g : T Clr are S-morphisms

such that

πrr+1 ◦ σ = gY .

Set t = Cl rg(τr) and tr+1 : YT Xr+1 as the product of σ and 1YT .

YT

Xr YT

Xrr+1 YClr

1Y

tr+1

σ
gr

p
gY

πrr+1

By construction, tr+1 is a section of Xr YT . Hence, the extension tt tr+1
belongs to Cl r+1π (T). Set µT ((σ,g)) = t t tr+1. To check that this map is
natural on T , fix an S-morphism f : T ′ T . By definition, the image of the
couple (σ,g) by Sect Clr

πrr
f is the couple ((σ ◦ fY),g ◦ f). On the other hand,

se�ing t ′ = Cl r+1f(tt tr) = (t ′1, . . . , t
′
r+1),

Cl r+1f(tt tr) = Cl rf(t)t t ′r+1 = Cl r(g ◦ f)(t)t t ′r+1.
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Hence, we just need to check that t ′r+1 is the product of σ ◦ fY with 1YT ′ ,
but this is clear because the following diagram commutes.

YT ′ X ′r+1 YT ′

YT Xr+1 YT

Xrr+1 YClr

t ′r+1

fY
p

fr+1
p

fY

tr+1

σ
gr+1
p

gY

πrr+1

Now, by Remark 5.15.1, it is clear that η and µ are mutually inverse.

Theorem 5.22. Let S be a locally Noetherian ground scheme and r > 1 an
integer. Let π :X Y be a steady S-family. If X is at most a countable disjoint
union of quasiprojective schemes over S and Y is proper and flat over S, then
the r-Ucs (Clr, τr) over π exists and the scheme Clr is locally Noetherian and
at most a countable disjoint union of quasiprojective schemes.

Proof. By induction on r. For r = 1, Remark 5.17.1 and Proposition 1.63 say
that the 1-Ucs over π exists. It is its Usf, which it is locally Noetherian and
at most a countable disjoint union of quasiprojective schemes.

Now, Lemma 5.21 and Theorem 3.26 provide the induction step.

5.3 elementary constructions

This section is devoted to two results on families of section-clusters. The first
construction is the generalisation for families of section-clusters of Proposi-
tion 1.64. The other two results of Section 1.5.1 do not generalise to families
of section-clusters since, in general, taking the preimage of the image of a
closed subscheme enlarges it.

The second result of this section, which is its motivation, relates the para-
meter spaces for clusters of di�erent lengths, so it is particular for families
of section-clusters.

Theorem 5.23. Let S be a ground scheme. Let π :X Y be a steady S-family.
Let T S be a morphism. Assume that the r-th universal scheme of section-
clusters (Clr, τr) of π exists. Set τrT = Cl rπ(ClrT Clr)(τr). Then the r-th
universal scheme of section-clusters of the (steady) T -family πT :XT YT is
(ClrT , τrT ).

Proof. Given a T -scheme T ′ T , clearly the image of the T -scheme T ′ T

by the functor

Cl rπT :SchT Set

and the image of the S-scheme T ′ T S by the functor

Cl rπ :SchS Set
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agree. Finally, by the universal property of pullbacks, there is an isomorph-
ism

SchS(T
′, Clr) ∼= SchT (T

′, ClrT )

natural on T ′. Hence, the scheme ClrT represents the functor Cl rπT .

Theorem 5.24. Let S be a ground scheme. Let π :X Y be a steady S-family.
Assume that s < r and that the r-th and s-th universal schemes of section-
clusters (Clr, τr) and (Cls, τs) of π exist. Let t :S Cls be an S-point of
Cls. Consider the length-s cluster t = (t1, . . . , ts) = Cl st(τs) and denote its
corresponding sequence of blow ups by

Xs+1 Xs . . . X1 = X.

Denote the compositionXs+1 Y by πt. Consider also the following Cartesian
square,

Clr−st S

Clr Cls

p
t

p

where p is the composition ps ◦ · · · ◦ pr−1 (see Notation 5.20). Set τrt =

(σ1, . . . ,σr) = Cl rπ(Clr−st Clr)(τr) and τr−st = (σs+1, . . . ,σr). Then,
the couple (Clr−st , τr−st ) is the (r− s)-th universal scheme of section-clusters
of πt :Xs+1 Y.

Proof. Given an S-scheme T and a length-(r− s) T -family of section-clusters
over πt,

(us+1, . . . ,ur),

it can be extended uniquely to a length-r T -family of section-clusters over
π,

(σ1, . . . ,σs,us+1, . . . ,ur).

Hence, by the universal property of (Clr, τr), there is a unique morphism
T Clr such that Cl rπ(T Clr)(τr) = (σ1, . . . ,σs,us+1, . . . ,ur).

Observe that, since τr|s = Cl sπp(τs), by functoriality of Cl sπ,

Cl sπ(Clr−st S)(t) = (σ1, . . . ,σs).

So, by the universal property of (Cls, τs), the composition T Clr p Cls

is equal to T S t Cls. Hence, there is a unique morphism T Clr−st

(the product of T Clr and T S) such that Cl r−sπt
(T Clr−st )(τr−st ) =

(us+1, . . . ,ur).
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5.4 towards an iterative construction

– QUINO
Todo Mafalda

Fix a ground scheme S. Fix a steady S-familyπ :X Y with Y integral and
Y S projective, smooth and with geometrically integral fibres. Assume
that, for each s = r− 1, r, r+ 1, the s-th universal scheme of section-clusters
(Cls, τs) over π exists. So, we may consider the sequence of blow ups

Xss+1 Xss . . . Xs1 = XCls ,
blss blss−1

whose j-th centre Csj ⊆ Xsj is the image of the section τsj of πsj :X
s
j Y. We

will focus on the blow up Xrr+1 Xrr, so denote its exceptional divisor by E.

In this section, we show that the blow up §family is the iterative step
to construct Clr+1 from Clr. More precisely, there is a stratification of
Clr×Clr−1 Clr such that every irreducible component of Clr+1 is either (a)
birational to the closure of an irreducible component of a stratum or (b) com-
posed entirely of clusters whose (r+ 1)-th section is infinitely near to the
r-th, see Chapter 5 and Corollary 5.38.1. So, each type (a) irreducible com-
ponent is an open subscheme of a blow up of an irreducible component of the
closure of a stratum along a suitable sheaf of ideals. The blow up §family is
the morphism from the union of all type (a) irreducible components (with a
non-necessarily reduced structure) to the whole scheme Clr×Clr−1 Clr. That
is, it incorporates the stratification of Clr×Clr−1 Clr and strata-wise it is the
corresponding blow up (see Theorem 5.37 and Corollary 5.38.1).

We also show that type (b) irreducible components form the Clr-Ussf of
E Yτr , so its general member corresponds to a cluster t over π whose
(r+ 1)-th section tr+1 is a section of the corresponding exceptional divisor,
which is not a flat limit of sections not contained in such exceptional divisor.

Notation 5.25. Consider Clr as an (Clr−1)-scheme via the morphism pr−1 :

Clr Clr−1 (see Notation 5.20). We will use several times the scheme
Clr×Clr−1 Clr, so we lighten up its notation to (Clr)2, and fix the notation
q1,q2 : (Clr)2 Clr for the projections over the first and the second factor
respectively.

For s = r− 1, r, consider an S-scheme T , a T -family of section-clusters
t = (t1, . . . , ts+1) over π and its corresponding sequence of blow ups

Xs+2 Xs+1 Xs . . . X1 = XT .
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The cs-morphism pst : (T , t|s) (Cls, τs) (see Notation 5.20) induces a mor-
phism

(pst)s+1 :Xs+1 Xss+1.

We denote by γt the composition

YT Xs+1 Xss+1.
ts+1 (pst)s+1

For s = r, we denote by Et (which is a locally principal subscheme of YT )
the pullback by γt : YT Xrr+1 of the exceptional divisor E in Xrr+1.

In the particular case that (T , t) is the (r+ 1)-Usc (Clr+1, τr+1) of π, we
denote γτr+1 simply by γ : YClr+1 Xrr+1 and Eτr+1 by Eτ.

Observe that by Lemma 5.21 and Remark 3.27.1, the triplet (Clr+1,γ,pr)
is the Clr-Ussf of Xrr+1 YClr .

Lemma 5.26. The scheme (Clr)2 represents the functor Sect Clr
πrr

.

Proof. Given an S-scheme T , we build a bijective map

ηT : Sect Clr
πrr

(T) SchS(T , (Clr)2),

which will be obviously natural on T .
An element of Sect Clr

πrr
(T) is a couple of morphisms (β, f) with β : YT Xrr

and f : T Clr such that πrr ◦ β = fY . Observe that the couple ((pr−1)r ◦
β, (pr−1 ◦ f)) is a T -family of (Clr−1)-split sections over πr−1r . Hence, since
by Lemma 5.21 and Remark 3.27.1, the triplet (Clr,γτr ,pr−1) is the (Clr−1)-
Ussf of πr−1r :Xr−1r YClr−1 , there is a unique morphism g : T Clr such
that

(pr−1)r ◦β = γτr ◦ gY (5.4.1)

(and pr−1 ◦ f = pr−1 ◦ g).
So, we set ηT (β, f) as (f×Clr−1 g) : T (Clr)2. Now, it is clear that f is

determined by the morphism T (Clr)2. Finally, by Remark 5.15.1 and
Equation (5.4.1), the morphism T (Clr)2 also determines β.

Notation 5.27. Consider the natural transformation

η : Sect Clr
πrr

SchS(T , (Clr)2)

defined in the proof of Lemma 5.26. The preimage of 1(Clr)2 by η(Clr)2 is
a couple of morphisms, Y ×S (Clr)2 Xrr and (Clr)2 Clr. By construc-
tion, the morphism (Clr)2 Clr is the projection q1 (recycling notation,
if we define η̃T (β, f) = g×Clr−1 f, then the morphism (Clr)2 Clr in the
preimage of 1(Clr)2 by η̃(Clr)2 is q2). We denote the other morphism by ρ :
Y ×S (Clr)2 Xrr.

Note that the couple (blrr ◦γ,pr) is an (Clr+1)-family of Clr-split sections
over πrr, that is πrr ◦ (blrr ◦γ) = (pr)Y . Hence, by Lemma 5.26, there is a
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unique morphism F : Clr+1 (Clr)2 such that the following diagram com-
mutes.

YClr+1 Xrr+1

Y ×S (Clr)2 Xrr

γ

FY blrr
ρ

The morphisms ρ and F could seem obscure, but they reveal its nature
once considered acting over S-points. We may identify an S-point c of (Clr)2

with an ordered pair of clusters (t, t ′) over π such that t|r−1 = t ′|r−1. An
S-point of Xrr may be identified with a couple (u,p) where u is a length-r
cluster overπ andp is a point of the last but one scheme of the corresponding
sequence of blow ups of u. So, slightly abusing notation, given an S-point y
of Y,

ρ(y, c) = (t, t ′r(y)).

An S-point of Clr+1 may be identified with a length-(r+ 1) cluster v over π,
so

F(v) = (v|r, v↓).
Moreover, following with this notation,

γ(y, v) = (v|r, v(y)).

We fix the following notation for everyS-scheme T and T -family of section-
clusters t over π.

Notation 5.28. We denote by TB the closed subscheme of T for which the
closed embedding YTB YT is the blow up of YT along Et (see Theorem 2.8).

Notation 5.29. We denote by TE the closed subscheme of T representing
the functor IsoEtYT T (see Theorem 3.17).

We denote by γB and γE the respective restrictions of γ : YClr+1 Xrr+1
to Y(Clr+1)B and Y(Clr+1)E .

Theorem 5.30. LetpE : (Clr+1)E Clr denote the restriction ofpr : Clr+1

Clr to (Clr+1)E. The triplet ((Clr+1)E,γE,pE) is the Clr-Ussf of πE :E YClr .

Proof. We will check that it satisfies the required universal property. Given
an S-scheme T and a T -family of Clr-split sections (σ, f) over E YClr (that
is σ : YT E, f : T Clr such that fY = πE ◦ σ), composing σ with the
closed embedding E Xrr+1, it determines a unique T -family of Clr-split
section family ofXrr+1 YClr . Hence, by the universal property of the triplet
(Clr+1,γ,pr), there is a unique morphism g : T Clr+1 such that γ ◦ gY is
the composition of σ with E Xrr+1 (and f = pr ◦ g).

The base change of Eτ YClr+1 by g is exactly the pullback of E Xrr+1
by γ ◦ gY . Hence, since γ ◦ gY factorises through E Xrr+1 via σ, by
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Lemma 1.32 such a base change is an isomorphism. Then, by the universal
property of the closed embedding (Clr+1)B Clr+1 (inherited from repres-
enting the functor Iso), there is a unique morphism T (Clr+1)B satisfying
the required property.

Theorem 5.31. The couple (Clr+1B ,γB) satisfies the following universal prop-
erty. For every S-scheme T and T -family of section-clusters t over π such that
Et is an e�ective Cartier divisor of YT , there is a unique morphism f : T Clr+1B

such that γt = γB ◦ fY .

Proof. Consider an S-scheme T and a T -family of section-clusters t over π
such that Et is an e�ective Cartier divisor.

By the universal property of (Clr+1, τr+1), there is a unique morphism g :

T Clr+1 such that t = Cl rπf(τr+1), in particular γt = γ ◦ gY .
By the universal property of the blow up Y(Clr+1)B YClr+1 , there is a

unique morphism h : YT Y(Clr+1)B such that gY is the composition of h
with Y(Clr+1)B YClr+1 . Finally, Lemma 2.7 asserts that there is a unique

morphism f : T (Clr+1)B such that h = fY .

Proposition 5.32. Let T be an S-scheme. Let t be a T -family of section-
clusters over π. There are unique morphisms gB : TB (Clr+1)B and gE :
TE (Clr+1)E such that γt|Y×STB = γB ◦ (gB)Y and γt|Y×STE = γE ◦ (gE)Y .

Proof. Se�ing tB = Cl π(TB T)(t), the morphism γtB is the composition
of γt with the closed embedding TB T . By construction EtB is an e�ective
Cartier divisor of YTB , hence the existence and uniqueness of gB comes from
Theorem 5.31.

Since the pullback of Et YT by YTE is an isomorphism, we may consider
its inverse. It gives a TE-family of Clr-split sections of E YClr . Hence, the
existence and uniqueness of gE comes from Theorem 5.30.

Let us fix a bit of additional notation. Consider the blow up §family
(B,b) of the projection Y ×S (Clr)2 (Clr)2 along ρ−1(Im(τrr)). Notice
that Im(τrr) is the centre of the blow up Xrr+1 Xrr. By construction, its
preimage by bY : YB Y ×S (Clr)2 is an e�ective Cartier divisor. Hence, by
the universal property of the blow upXrr+1 Xrr, there is a unique morphism
β : YB Xrr+1 such that β = ρ ◦ bY .

Now, the couple (β,q1 ◦ b) is a B-family of Clr-split sections of Xrr+1
YClr . Hence, by the universal property of (Clr+1,γ,pr) there is a unique
morphism G : B Clr+1 such that β = γ ◦GY .

Lemma 5.33. The morphisms b, F and G satisfy the relation b = F ◦G.

Proof. Since ρ ◦ bY = ρ ◦ FY ◦GY = ρ ◦ (F ◦G)Y , by the universal property
of ((Clr)2, ρ,q1), b = F ◦G.

Proposition 5.34. The core of the blow up §family of (B,b) is the diagonal
∆ of (Clr)2.
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Observe that, identifying an S-point c of (Clr)2 with a pair of clusters
t, t ′ over π with t|r−1 = t|r−1, the fibre of ρ−1(Im(τrr)) (Clr)2 at c is
isomorphic to Im(tr)∩ Im(t ′r). By Remark 3.14.2, the underlying set of such
a core and ∆ have to be equal.

Proof of Proposition 5.34. We show that the closed embedding i :∆ (Clr)2

represents the functor Isoρ
−1(Im(τr))

Y×(Clr)2 (Clr)2 . By construction, the image of
ρ ◦ iY is equal to that of τrr, so ρ ◦ iY factorises through Im(τrr) and then,
by Lemma 1.32, the pullback of Im(τrr) Xrr by ρ ◦ iY (which is the base
change of ρ−1(Im(τrr)) Y ×S (Clr)2 by i) is an isomorphism.

Now, given a morphism f : T (Clr)2 such that (ρ−1(Im(τrr)))T YT
is an isomorphism, the composition of q1 ◦ f : T Clr with ∆ (Clr)2 is
equal to f.

Theorem 5.35. The couple (B,β) satisfies the same universal property as the
couple ((Clr+1)B,γB) (see Theorem 5.31).

Proof. Consider an S-scheme T and a T -family of section-clusters t over π
such that Et is an e�ective Cartier divisor.

By the universal property of (Clr+1, τr+1), there is a unique morphism g :

T Clr+1 such that t = Cl rπf(τr+1), in particular γt = γ ◦ gY .
The pullback of ρ−1(Im(τ)rr) by the composition FY ◦ gY is Et, an e�ective

Cartier divisor of YT by assumption (see Notation 5.27). Hence, by the uni-
versal property of the blow up §family (B,b), there is a unique morphism
f : T B such that F ◦ g = b ◦ f. Now, assuming gY = GY ◦ fY , and then

β ◦ fY = γ ◦GY ◦ fY = γ ◦ gY = γt.

To check that gY = GY ◦ fY , by the universal property of (Clr+1,γ,pr), we
just need to check that their compositions with γ agree. So now, we are
wondering whether the two morphisms, γ ◦ gY and γ ◦ GY ◦ fY from YT
to Xrr+1, agree. But, by the universal property of the blow up Xrr+1 Xrr,
we just need to check that their compositions with this blow up morphism
agree, which is straightforward.

Corollary 5.35.1. The morphism G : B Clr+1 is a closed embedding.

Proposition 5.36. Let T be an S-scheme. Let t be a T -family of sections-
clusters over π. If T is integral, then it is equal to either TB or TE.

Proof. Since, by assumption, T and Y are integral, the locally principal subs-
cheme Et of YT is either an e�ective Cartier divisor or the whole scheme YT .
So, in the former case the blow up YTB YT is an isomorphism and in the
la�er the scheme T itself represents the functor IsoEtYT T .

Theorem 5.37. Let T be an S-scheme. Let t be a T -family of sections-clusters
over π. The scheme Tred is a closed subscheme of the schematic union TE + TB.
In particular, the underlying topological spaces of B+ (Clr+1)E and Clr+1 are
homeomorphic.
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Proof. By Proposition 5.36 every irreducible component of T , with its re-
duced structure, is a closed subscheme of either TB or TE.

Consider the fla�ening stratification

(Clr)2 =
⊔
Φ

(Clr)2Φ

of ρ−1(Im(τrr)) (Clr)2 (see Section 1.6). From now on, assume Y smooth
over S. So, the connected components of the strata are type I or type II,
see Definition 4.6.

By Proposition 5.34, ∆ (Clr)2 is a type II stratum. Slightly abusing
notation let us set

(Clr)2 = ∆t
⊔
Φ∈Ω ′

(Clr)2Φ (5.4.2)

as the disjoint union of the connected components of the strata and call its
components strata again. By Theorem 4.8 and Corollary 4.8.2, denoting by
Ω the set of indices for all type I strata, b gives an isomorphism

B \ b−1(∆) ∼=
⊔
Φ∈Ω

(Clr)2Φ.

Proposition 5.38. An S-point c of a type I stratum (Clr)2Φ corresponds to an
admissible pair of clusters over π (see Definition 5.12).

Proof. Since (Clr)2Φ is separated over S, c is a closed embedding. So, clearly
by construction and by Lemma 4.4 (a), the base change ρ−1(Im(τrr))c Y

of ρ−1(Im(τrr)) Y ×S (Clr)2Φ by c :S (Clr)2Φ is an e�ective Cartier
divisor.

Corollary 5.38.1. Each irreducible component Z of Clr+1 is either

1. composed entirely of clusters whose (r+ 1)-th section is infinitely near
to the r-th (that is, Z ⊆ (Clr+1)E and F(Z) ⊂ ∆),

2. birational to an irreducible component of the closureC of a type I stratum,
that is, F|Z :Z C is a blowup map whose centre fails to be Cartier only
on ∆. In particular, if C∩∆ is empty, Z ∼=F C.

Proof. Follows immediately from Corollary 4.8.2 and Theorem 5.37.

We finish showing, with a small example, that in fact we expect the
schemes B+(Clr+1)E and Clr+1 to be isomorphic. Consider an S-scheme T
and a T -family of section-clusters t over π. The scheme TE is a closed subs-
cheme of T , for whichγt|YTE is a TE-family of Clr-split sections overE YClr .
Observe that, once we get the closed subscheme TB of T , there is another
natural (and maybe more intuitive) way to obtain a closed subscheme of
T parametrising Clr-split sections of E YClr . Namely, as the schematic
closure of the open embedding (T \ TB) T , let us call it T iiE . These two
constructions are equivalent in some cases, but to our knowledge, in general
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there are just closed embeddings Tred (TB ∪ T iiE ) (TB ∪ TE) T . Let us
show it with a couple of examples unrelated to section families.

We consider Y S the identity of the spectrum of a base field k, so the
projection YT T is just the identity and the scheme TE is equal to Et. One
obtains an example where TE = T iiE by taking T equal to the spectrum of
A = k[x,y]/(xy) and Et is the principal subscheme determined by x ∈
k[x,y]/(xy). In this case, the closed embedding TB T corresponds to
the natural homomorphism A A/(y) and both, TE and T iiE , coincide the
spectrum of A/(x). But if we replace A with Ã = k[x,y]/(y2, xy), then T̃ iiE
is empty whereas the schemes T̃E + T̃B and T̃ are equal.

5.5 examples

In this section, we collect a few simple examples of r-Ucs for r = 1, 2 over
families of surfaces (defined over a base field k), whose behaviour di�ers
from Kleiman’s iterated blow ups in distinct ways. We consider families π :
X Y with Y and X projective; by Theorem 5.19 the r-Ucs (Clr, τr) of π
exists for all r > 1. Throughout this section, notation of Section 5.4 for r = 1
is fixed. Finally, if (X,ψ) is the Usf of π, by Remark 5.17.1 the scheme Cl1 is
isomorphic to X. So, we will refer to the elements of Cl1 as sections and of
Cl2 as clusters.

Example 5.39 (New components). We show a family for which (Cl2)E has
infinitely many connected components, whose clusters can not be obtained
as the strict transform of flat limits of pairs of sections ofπ, or in other words,
those are also connected components in Cl2.

Consider a smooth projective family π :X Y of relative dimension 2
with Y a smooth curve.

The irreducible components of Cl1 are classified by the degree of the
images of sections of π and there are at most finitely many components for
each degree. So, there are at most countably many irreducible components
Td of Cl1 with d ∈N.

For any pair of integers d,d ′ > 0, there is a positive integer which bounds
the degree of the 0-cycle intersection of any pair of sections in Td × Td ′ .
Given an integer i > 0, we denote by Di the locally closed subscheme of
(Cl1)2 consisting of pairs of sections whose intersection is a 0-cycle of degree
i. For each i,d,d ′ > 0, set Di,d,d ′ = Di ∩ (Td × Td ′), which is either empty
or an irreducible and connected component of Di. So, the stratification
Equation (5.4.2) is given by

(Cl1)2 = ∆t
⊔
i,d,d ′

Di,d,d ′ .

There are no restrictions on the admissible pairs of sections because the
base is smooth and of dimension one. So, ∆ (Cl1)2 is the unique type II
stratum and for every i,d,d ′ > 0 there is an irreducible component Zi,d,d ′

of Cl2 birational to the closure of Di,d,d ′ .
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Now assume, for simplicity, Y = P1k for some field k. For each section σ
of π, the exceptional divisor Eσ in the blow up Xσ X is a rational surface
isomorphic to the projectivisation of the normal bundle of σ in X, which (for
some a,b ∈ Z, say with b > a) is isomorphic to P(OP1(a)⊕OP1(b)), the
Hirzebruch surface Fb−a. So, se�ing e = b− a, there are two divisors C, F
in Eσ such that

Pic(Eσ) = Z[C] + Z[F]

with C2 = −e, F2 = 0 and CF = 1 (see [32, Chapter V, Theorem 2.17,
p.379]). Observe that any irreducible curve of Eσ, say linearly equivalent to
D = nC+mF for somen,m ∈ Z, intersects every fibre (Eσ)p at exactly one
point for every p ∈ P1k if and only if 1 = D · F = n. That is, an irreducible
curve of Eσ is the image of a section ofXσ P1k if and only if it is irreducible
and linearly equivalent to C+mF, with m = 0 or m > e. The sections of
Eσ P1k are in correspondence with non-reduced schemes supported at
σ in X, via direct images and strict transforms. Since σ has a fixed degree,
there are finitely many possible degrees for non-reduced schemes supported
at σ obtained as flat limits of pairs of sections of X P1k.

Hence, there are infinitely many irreducible components in (Cl2)E, one
for each m > e or m = 0, and infinitely many of them are filled up with
clusters which are not limits of points of any Zi,d,d ′

Example 5.40 (The dimension may decrease). This example illustrates that
the dimension of the schemes parametrising clusters may decrease as we
enlarge the length of the clusters to parametrise. The phenomenon is due
to the admissibility restriction on pairs of sections, which does not exist in
the absolute se�ing, or when the base is a integral smooth curve.

Consider as a family the projection on the second factor π :P2k ×P2k
P2k, for some field k. The scheme Cl1 is a union of irreducible connected
components Cd with d > 0, each one isomorphic to the open subscheme of
P(k[u, v,w]3d) corresponding to triplets of forms with no common roots.

Lemma 5.41. Given two morphism f,g :P2k P2k, with f non-constant, the
intersection Z of the graphs of f and g in P2k ×P2k is not an e�ective Cartier
divisor of the graph of f.

Proof. The graphs of f and g are varieties of dimension two in a four dimen-
sional ambient space, hence in general they intersect in a codimension 2
subvariety. It is not hard to see that this is always the case.

By Lemma 5.41, a pair of sections of π is admissible if and only if both
sections are constant. Given a closed point c of Cl2 with image F(c) =

(σ, τ) ∈ (Cl1)2, the couple (σ, τ) can be either an admissible pair of sections
of π (then, both σ, τ are constant) or τ is a section of the exceptional divisor
Eσ in the blow up Xσ X. If σ is constant, say with image q ∈ P2k, then
Xσ = bl(q, P2)×P2 and Eσ P2k is isomorphic to the projection P1k ×
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P2k P2k, which admits only constant sections. Finally, when σ is non-
constant, Eσ P2k admits no sections. Hence,

Cl2 = bl
(
∆P2 , P2 ×P2

)
.

Example 5.42 (Non-unique centre). This example (a particular case of Ex-
ample 5.39 explicitly computed) illustrates that the ideal sheaf, centre of a
blow up F|Z :Z C (see notations Corollary 5.38.1), need not be the ideal
sheaf of ∆ ∩ C in C nor unique (in this case, the singularities of C allow
di�erent centres for the same blow up morphism).

Fix a line L in the three dimensional projective space P3k over a field k. We
consider as a family the P1k pencil of planes containing L. The ambient space
is the quasiprojective variety X = P3k \ L. There are several equivalent ways
to describe the projection π :X P1k, via Grasmannians, the tangent space
of a nondegenerated quadric containing L, the blow up bl : bl(L, P3k) P3k
and more. Consider P3k as the homogeneous spectrum of R = k[x,y, z,w]
and, via a linear change of coordinates if it is needed, assume L cut out by
a = (x,y). So,

π : X P1k

[x : y : z : w] [x : y]

and the fibreXp for a point p = [α : β] ∈ P1k is the plane cut out byβx−αy

minus L.

The image of a section of π is a projective rational curve, disjoint to L, that
intersects every plane Xp at one point. So, it is simply a line disjoint to L
and every line disjoint to L determines a section of π. Hence, Cl1 is the open
subvariety of the Grasmannian G of lines in P3k corresponding to the lines
not meeting L. This open subvariety is the complement of the tangent space
of G at L, which is isomorphic to A4

k, say with ring of functions k[a,b, c,d].
We may pick a parametrisation which associates a point σ = (a,b, c,d) ∈
Cl1 the line

Lσ = Spec
(
ax+ by− z

cx+ dy− t

)
⊆ X.

So, the morphism ρ :P1k × (Cl1)2 Cl1×X sends(
[u : v], (a,b, c,d), (a ′,b ′, c ′,d ′)

)
to (

(a,b, c,d), [u : v : a ′u+ b ′v : c ′u+ d ′v]
)
.

Set W = V((a− a ′)(d− d ′) − (b− b ′)(c− c ′)) ⊂ Cl1×Cl1. Given p 6=
p ′ ∈ Cl1, the lines Lp, Lp ′ meet if and only if (p,p ′) ∈ W and in this
case they always meet at a simple point. Hence, the fla�ening stratification
Equation (5.4.2) is given by

Cl1×Cl1 = ∆t (W \∆)tWc.
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Now, we focus on the irreducible component Z of Cl2 dominating the
stratumW \∆. The variety X12 is given by

V
(
µ(ax+ by− z) − ν(cx+ dy−w)

)
⊆ Cl1×X×P1k,

where [ν : µ] are the coordinates of P1k. The morphism ρ restricted to the
stratum P1k × (W \ ∆) extends to X12. Over the coordinates [ν : µ], it is
[a− a ′ : b− b ′] or [c− c ′ : d− d ′] depending on which is well-defined,
and, in case both are, they are equal since (a,b, c,d,a ′,b ′, c ′,d ′) belongs
to W. But the morphism ρ does not extend to the diagonal. To see this,
consider the blow up of (Cl1)2 along the ideal (a− a ′,b− b ′), that is

V(η(a− a ′) −ω(b− b ′)) ⊆ (Cl1)2 ×P1k,

where [ω : η] are the coordinates of P1k. The strict transform W̃ ofW under
this blow up is a small resolution ofW. Now, we can li� the morphism ρ to
W̃ ×P1k X01, over the coordinates [ν : µ] it is just [ω : η]. That implies
W̃ ∼= Z, because any two distinct points of W̃ give two distinct sections of
X12 P1k and the dimensions agree. Observe that the ideal is not unique,
the ideal (c− c ′,d− d ′) also works.
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There is no conflict between the individual and the social
instincts, any more than there is between the heart and the
lungs: the one the receptacle of a precious life essence, the other
the repository of the elements that keeps the essence pure and
string. The individual is the heart of society, conserving the
essence of social life; society is the lungs which are distributing
the element to keep the life essence –that is, the individual–
pure and strong.
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